cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A029549 a(n + 3) = 35*a(n + 2) - 35*a(n + 1) + a(n), with a(0) = 0, a(1) = 6, a(2) = 210.

Original entry on oeis.org

0, 6, 210, 7140, 242556, 8239770, 279909630, 9508687656, 323015470680, 10973017315470, 372759573255306, 12662852473364940, 430164224521152660, 14612920781245825506, 496409142337836914550, 16863297918705209269200, 572855720093639278238256
Offset: 0

Views

Author

Keywords

Comments

Triangular numbers that are twice other triangular numbers. - Don N. Page
Triangular numbers that are also pronic numbers. These will be shown to have a Pythagorean connection in a paper in preparation. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Mar 09 2002
In other words, triangular numbers which are products of two consecutive numbers. E.g., a(2) = 210: 210 is a triangular number which is the product of two consecutive numbers: 14 * 15. - Shyam Sunder Gupta, Oct 26 2002
Coefficients of the series giving the best rational approximations to sqrt(8). The partial sums of the series 3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(8) = 2 sqrt(2), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [2; 1, 4, 1], [2; 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1], [2; 1, 4, 1, 4, 1, 4, 1, 4, 1] and so forth. - Gene Ward Smith, Sep 30 2006
This sequence satisfy the same recurrence as A165518. - Ant King, Dec 13 2010
Intersection of A000217 and A002378.
This is the sequence of areas, x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n) = x(n) + 1,z(n)) with x(0) = 0, y(0) = 1, z(0) = 1, a(0) = 0 and x(1) = 3, y(1) = 4, z(1) = 5, a(1) = 6. - George F. Johnson, Aug 20 2012

Crossrefs

Programs

  • GAP
    List([0..20], n-> (Lucas(2,-1, 4*n+2)[2] -6)/32 ); # G. C. Greubel, Jan 13 2020
  • Haskell
    a029549 n = a029549_list !! n
    a029549_list = [0,6,210] ++
       zipWith (+) a029549_list
                   (map (* 35) $ tail delta)
       where delta = zipWith (-) (tail a029549_list) a029549_list
    -- Reinhard Zumkeller, Sep 19 2011
    
  • Macsyma
    (makelist(binom(n,2),n,1,999999),intersection(%%,2*%%)) /* Bill Gosper, Feb 07 2010 */
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); [0] cat Coefficients(R!(6/(1-35*x+35*x^2-x^3))); // G. C. Greubel, Jul 15 2018
    
  • Maple
    A029549 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[0,6]) ;
        else
            34*procname(n-1)-procname(n-2)+6 ;
        end if;
    end proc: # R. J. Mathar, Feb 05 2016
  • Mathematica
    Table[Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Original program from author, corrected by Ray Chandler, Jul 09 2015 *)
    CoefficientList[Series[6/(1 - 35x + 35x^2 - x^3), {x, 0, 14}], x]
    Intersection[#, 2#] &@ Table[Binomial[n, 2], {n, 999999}] (* Bill Gosper, Feb 07 2010 *)
    LinearRecurrence[{35, -35, 1}, {0, 6, 210}, 20] (* Harvey P. Dale, Jun 06 2011 *)
    (LucasL[4Range[20] - 2, 2] -6)/32 (* G. C. Greubel, Jan 13 2020 *)
  • PARI
    concat(0,Vec(6/(1-35*x+35*x^2-x^3)+O(x^25))) \\ Charles R Greathouse IV, Jun 13 2013
    
  • Sage
    [(lucas_number2(4*n+2, 2, -1) -6)/32 for n in (0..20)] # G. C. Greubel, Jan 13 2020
    
  • Scala
    val triNums = (0 to 39999).map(n => (n * n + n)/2)
    triNums.filter( % 2 == 0).filter(n => (triNums.contains(n/2))) // _Alonso del Arte, Jan 12 2020
    

Formula

G.f.: 6*x/(1 - 35*x + 35*x^2 - x^3) = 6*x /( (1-x)*(1 - 34*x + x^2) ).
a(n) = 6*A029546(n-1) = 2*A075528(n).
a(n) = -3/16 + ((3+2*sqrt(2))/32) *(17 + 12*sqrt(2))^n + ((3-2*sqrt(2))/32) *(17 - 12*sqrt(2))^n. - Gene Ward Smith, Sep 30 2006
From Bill Gosper, Feb 07 2010: (Start)
a(n) = (cosh((4*n + 2)*log(1 + sqrt(2))) - 3)/16.
a(n) = binomial(A001652(n) + 1, 2) = 2*binomial(A053141(n) + 1, 2). (End)
a(n) = binomial(A046090(n), 2) = A000217(A001652(n)). - Mitch Harris, Apr 19 2007, R. J. Mathar, Jun 26 2009
a(n) = ceiling((3 + 2*sqrt(2))^(2n + 1) - 6)/32 = floor((1/32) (1+sqrt(2))^(4n+2)). - Ant King, Dec 13 2010
Sum_{n >= 1} 1/a(n) = 3 - 2*sqrt(2) = A157259 - 4. - Ant King, Dec 13 2010
a(n) = a(n - 1) + A001109(2n). - Charlie Marion, Feb 10 2011
a(n+2) = 34*a(n + 1) - a(n) + 6. - Charlie Marion, Feb 11 2011
From George F. Johnson, Aug 20 2012: (Start)
a(n) = ((3 + 2*sqrt(2))^(2*n + 1) + (3 - 2*sqrt(2))^(2*n + 1) - 6)/32.
8*a(n) + 1 = (A002315(n))^2, 4*a(n) + 1 = (A000129(2*n + 1))^2, 32*a(n)^2 + 12*a(n) + 1 are perfect squares.
a(n + 1) = 17*a(n) + 3 + 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1) = 17*a(n) + 3 - 3*sqrt((8*a(n) + 1)*(4*a(n) + 1)).
a(n - 1)*a(n + 1) = a(n)*(a(n) - 6), a(n) = A096979(2*n).
a(n) = (1/2)*A084159(n)*A046729(n) = (1/2)*A001652(n)*A046090(n).
Limit_{n->infinity} a(n)/a(n - 1) = 17 + 12*sqrt(2).
Limit_{n->infinity} a(n)/a(n - 2) = (17 + 12*sqrt(2))^2 = 577 + 408*sqrt(2).
Limit_{n->infinity} a(n)/a(n - r) = (17 + 12*sqrt(2))^r.
Limit_{n->infinity} a(n - r)/a(n) = (17 + 12*sqrt(2))^(-r) = (17 - 12*sqrt(2))^r. (End)
a(n) = 3 * T( b(n) ) + (2*b(n) + 1)*sqrt( T( b(n) ) ) where b(n) = A001108(n) (indices of the square triangular numbers), T(n) = A000217(n) (the n-th triangular number). - Dimitri Papadopoulos, Jul 07 2017
a(n) = (Pell(2*n + 1)^2 - 1)/4 = (Q(4*n + 2) - 6)/32, where Q(n) are the Pell-Lucas numbers (A002203). - G. C. Greubel, Jan 13 2020
a(n) = A002378(A011900(n)-1) = A002378(A053141(n)). - Pontus von Brömssen, Sep 11 2024

Extensions

Additional comments from Christian G. Bower, Sep 19 2002; T. D. Noe, Nov 07 2006; and others
Edited by N. J. A. Sloane, Apr 18 2007, following suggestions from Andrew S. Plewe and Tanya Khovanova

A005214 Triangular numbers together with squares (excluding 0).

Original entry on oeis.org

1, 3, 4, 6, 9, 10, 15, 16, 21, 25, 28, 36, 45, 49, 55, 64, 66, 78, 81, 91, 100, 105, 120, 121, 136, 144, 153, 169, 171, 190, 196, 210, 225, 231, 253, 256, 276, 289, 300, 324, 325, 351, 361, 378, 400, 406, 435, 441, 465, 484, 496, 528, 529, 561, 576, 595, 625, 630, 666, 676
Offset: 1

Views

Author

Russ Cox, Jun 14 1998

Keywords

References

  • Douglas R. Hofstadter, Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, (together with the Fluid Analogies Research Group), NY: Basic Books, 1995, p. 15.

Crossrefs

Union of A000290 and A000217.
Cf. A001110, A054686, A157259, A117704 (first differences), A193711 (partial sums), A193748, A193749 (partitions into).
Cf. A241241 (subsequence), A242401 (complement).

Programs

  • Haskell
    import Data.List.Ordered (union)
    a005214 n = a005214_list !! (n-1)
    a005214_list = tail $ union a000290_list a000217_list
    -- Reinhard Zumkeller, Feb 15 2015, Aug 03 2011
    
  • Maple
    a := proc(n) floor(sqrt(n)): floor(sqrt(n+n)):
    `if`(n+n = %*% + % or n = %% * %%, n, NULL) end: # Peter Luschny, May 01 2014
  • Mathematica
    With[{upto=700},Module[{maxs=Floor[Sqrt[upto]], maxt=Floor[(Sqrt[8upto+1]- 1)/2]},Union[Join[Range[maxs]^2, Table[(n(n+1))/2,{n,maxt}]]]]] (* Harvey P. Dale, Sep 17 2011 *)
  • PARI
    upTo(lim)=vecsort(concat(vector(sqrtint(lim\1),n,n^2), vector(floor(sqrt(2+2*lim)-1/2),n,n*(n+1)/2)),,8) \\ Charles R Greathouse IV, Aug 04 2011
    
  • PARI
    isok(m) = ispolygonal(m,3) || ispolygonal(m,4); \\ Michel Marcus, Mar 13 2021

Formula

From Reinhard Zumkeller, Aug 03 2011: (Start)
A010052(a(n)) + A010054(a(n)) > 0.
A010052(a(A193714(n))) = 1.
A010054(a(A193715(n))) = 1. (End)
a(n) ~ c * n^2, where c = 3 - 2*sqrt(2) = A157259 - 4 = 0.171572... . - Amiram Eldar, Apr 04 2025

A129288 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 41)^2 = y^2.

Original entry on oeis.org

0, 36, 39, 123, 319, 336, 820, 1960, 2059, 4879, 11523, 12100, 28536, 67260, 70623, 166419, 392119, 411720, 970060, 2285536, 2399779, 5654023, 13321179, 13987036, 32954160, 77641620, 81522519, 192071019, 452528623, 475148160, 1119472036
Offset: 1

Views

Author

Mohamed Bouhamida, May 26 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+41, y).
Corresponding values y of solutions (x, y) are in A157257.
lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (7 + 2*sqrt(2))/(7 - 2*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3 + 2*sqrt(2))*(7 - 2*sqrt(2))^2/(7 + 2*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157257, A001652, A156035 (decimal expansion of 3 + 2*sqrt(2)), A157258 (decimal expansion of 7 + 2*sqrt(2)), A157259 (decimal expansion of 7 - 2*sqrt(2)), A157260 (decimal expansion of (7 + 2*sqrt(2))/(7 - 2*sqrt(2))).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(36+3*x+84*x^2-20*x^3-x^4-20*x^5)/((1-x)*(1-6*x^3+ x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,36,39,123,319,336,820},40] (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    forstep(n=0, 1200000000, [3 ,1], if(issquare(2*n^2+82*n+1681), print1(n, ",")))
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 82 for n > 6; a(1)=0, a(2)=36, a(3)=39, a(4)=123, a(5)=319, a(6)=336.
G.f.: x*(36 + 3*x + 84*x^2 - 20*x^3 - x^4 - 20*x^5)/((1-x)*(1 - 6*x^3 + x^6)).
a(3*k + 1) = 41*A001652(k) for k >= 0.

Extensions

Edited and extended by Klaus Brockhaus, Feb 26 2009

A157258 Decimal expansion of 7 + 2*sqrt(2).

Original entry on oeis.org

9, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7, 0, 0, 2
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {1, 2}, b = A129288.
lim_{n -> infinity} b(n)/b(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {0, 2}, b = A157257.

Examples

			7 + 2*sqrt(2) = 9.82842712474619009760...
		

Crossrefs

Cf. A129288, A157257, A157259 (decimal expansion of 7-2*sqrt(2)), A157260 (decimal expansion of (7+2*sqrt(2))/(7-2*sqrt(2))).

Programs

Formula

Equals 4 + A156035. - R. J. Mathar, Feb 27 2009

A157257 Positive numbers y such that y^2 is of the form x^2+(x+41)^2 with integer x.

Original entry on oeis.org

29, 41, 85, 89, 205, 481, 505, 1189, 2801, 2941, 6929, 16325, 17141, 40385, 95149, 99905, 235381, 554569, 582289, 1371901, 3232265, 3393829, 7996025, 18839021, 19780685, 46604249, 109801861, 115290281, 271629469, 639972145, 671961001
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

(-20, a(1)) and (A129288(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+41)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(7-2*sqrt(2))^2/(7+2*sqrt(2))^2 for n mod 3 = 1.

Examples

			(-20, a(1)) = (-20, 29) is a solution: (-20)^2+(-20+41)^2 = 400+441 = 841 = 29^2.
(A129288(1), a(2)) = (0, 41) is a solution: 0^2+(0+41)^2 = 1681 = 41^2.
(A129288(3), a(4)) = (39, 89) is a solution: 39^2+(39+41)^2 = 1521+6400 = 7921 = 89^2.
		

Crossrefs

Cf. A129288, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157258 (decimal expansion of 7+2*sqrt(2)), A157259 (decimal expansion of 7-2*sqrt(2)), A157260 (decimal expansion of (7+2*sqrt(2))/(7-2*sqrt(2))).

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6))) // G. C. Greubel, Feb 04 2018
  • Mathematica
    CoefficientList[Series[(1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6), {x,0,50}], x] (* G. C. Greubel, Feb 04 2018 *)
  • PARI
    {forstep(n=-20, 500000000, [3 ,1], if(issquare(n^2+(n+41)^2, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6)) \\ G. C. Greubel, Feb 04 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=29, a(2)=41, a(3)=85, a(4)=89, a(5)=205, a(6)=481.
G.f.: (1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 41*A001653(k) for k >= 1.

A157260 Decimal expansion of (7 + 2*sqrt(2))/(7 - 2*sqrt(2)).

Original entry on oeis.org

2, 3, 5, 6, 0, 4, 8, 2, 8, 6, 4, 9, 8, 6, 9, 9, 0, 5, 7, 7, 1, 8, 2, 2, 6, 4, 4, 5, 8, 0, 1, 7, 4, 5, 0, 2, 9, 2, 6, 7, 0, 9, 2, 9, 8, 8, 0, 6, 2, 3, 0, 6, 0, 0, 1, 1, 9, 3, 8, 3, 0, 0, 6, 4, 9, 6, 9, 2, 8, 0, 7, 1, 6, 9, 9, 8, 5, 1, 2, 1, 2, 4, 0, 9, 2, 9, 4, 7, 5, 8, 4, 4, 1, 8, 8, 7, 7, 1, 7, 1, 6, 2, 3, 9, 1
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A129288.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A157257.

Examples

			(7 +2*sqrt(2))/(7 -2*sqrt(2)) = 2.35604828649869905771...
		

Crossrefs

Cf. A129288, A157257, A157258 (decimal expansion of 7+2*sqrt(2)), A157259 (decimal expansion of 7-2*sqrt(2)).
Cf. A157300 (decimal expansion of (1683+58*sqrt(2))/41^2). - Klaus Brockhaus, May 01 2009

Programs

  • Magma
    [(7+2*Sqrt(2))/(7-2*Sqrt(2))]; // G. C. Greubel, Nov 28 2017
  • Mathematica
    RealDigits[(7 + 2*Sqrt[2])/(7 - 2*Sqrt[2]), 10, 50][[1]] (* G. C. Greubel, Nov 28 2017 *)
  • PARI
    (7+2*sqrt(2))/(7-2*sqrt(2)) \\ G. C. Greubel, Nov 28 2017
    

Formula

Equals (57 + 28*sqrt(2))/41. - Klaus Brockhaus, May 01 2009

A365823 Decimal expansion of 2*(2 + sqrt(2)).

Original entry on oeis.org

6, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2023

Keywords

Comments

The greater one of the solutions to x^2 - 8 * x + 8 = 0. The other solution is A157259 - 3 = 1.17157... . - Michal Paulovic, Nov 14 2023

Examples

			6.8284271247461900976033774484193961571393437507538961...
		

Crossrefs

Essentially the same as A157258, A090488, A086178 and A010466.

Programs

  • Maple
    evalf(4+sqrt(8), 130);  # Alois P. Heinz, Nov 13 2023
  • Mathematica
    First[RealDigits[2*(2 + Sqrt[2]), 10, 99]] (* Stefano Spezia, Nov 11 2023 *)
  • PARI
    \\ Works in v2.13 and higher; n = 100 decimal places
    my(n=100); digits(floor(10^n*(4+quadgen(32)))) \\ Michal Paulovic, Nov 14 2023

Formula

Equals 2*sqrt(2)*(1 + sqrt(2)) = 2*(2 + sqrt(2)). This is an integer in the quadratic number field Q(sqrt(2)).
Equals lim_{n->oo} A057084(n + 1)/A057084(n).
Equals continued fraction with periodic term [[6], [1, 4]]. - Peter Luschny, Nov 13 2023
Equals -3+A157258 = 1+A156035 = 2+A090488 = 3+A086178 = 4+A010466 = 6+A163960. - Alois P. Heinz, Nov 15 2023

A276627 Decimal expansion of K(3-2*sqrt(2)), where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

1, 5, 8, 2, 5, 5, 1, 7, 2, 7, 2, 2, 3, 7, 1, 5, 9, 1, 1, 8, 3, 3, 1, 3, 5, 0, 7, 1, 0, 7, 0, 4, 0, 9, 8, 7, 6, 5, 2, 9, 4, 8, 8, 1, 4, 9, 6, 1, 8, 7, 8, 9, 2, 4, 3, 4, 9, 7, 1, 6, 9, 4, 4, 8, 4, 7, 8, 2, 0, 8, 5, 3, 5, 1, 8, 6, 6, 6, 3, 5, 5, 1, 7, 3, 6, 2, 0, 9, 8, 1, 4, 0, 6, 5, 5, 4, 3, 2, 2, 2, 0, 0, 0, 4, 1
Offset: 1

Views

Author

Benedict W. J. Irwin, Sep 07 2016

Keywords

Comments

The modulus k=3-2*sqrt(2).
K(k_4) in the MathWorld link.

Examples

			1.58255172722371591183313507107040987652948814961878924349716944847...
		

Crossrefs

Cf. A157259 (for 3-2*sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 2*(2+Sqrt(2))*Pi(R)^(3/2)/Gamma(-1/4)^2; // G. C. Greubel, Oct 08 2018
  • Maple
    evalf(2*(2+sqrt(2))*Pi^(3/2)/GAMMA(-1/4)^2,120); # Muniru A Asiru, Oct 08 2018
  • Mathematica
    RealDigits[N[EllipticK[(3 - 2 Sqrt[2])^2], 105]][[1]]
    RealDigits[2*(2+Sqrt[2])*Pi^(3/2)/Gamma[-1/4]^2, 10, 100][[1]] (* G. C. Greubel, Oct 08 2018 *)
  • PARI
    default(realprecision, 100); 2*(2+sqrt(2))*Pi^(3/2)/gamma(-1/4)^2 \\ G. C. Greubel, Oct 08 2018
    
  • PARI
    ellK(3-sqrt(8)) \\ Charles R Greathouse IV, Feb 05 2025
    

Formula

Equals 2*(2+sqrt(2))*Pi^(3/2)/Gamma(-1/4)^2.
Equals A174968 * A062539 / 2. - R. J. Mathar, Aug 18 2023
Equals A093341 * A201488 [Zucker]. - R. J. Mathar, Jun 24 2024

A337440 Decimal expansion of Pi*(3 - 2*sqrt(2)).

Original entry on oeis.org

5, 3, 9, 0, 1, 2, 0, 8, 4, 4, 5, 2, 6, 4, 7, 2, 2, 1, 3, 5, 6, 1, 6, 8, 1, 6, 9, 7, 1, 7, 1, 2, 1, 2, 5, 5, 3, 6, 2, 2, 6, 4, 8, 1, 9, 3, 7, 3, 9, 3, 7, 0, 1, 6, 7, 5, 4, 0, 4, 2, 5, 6, 3, 0, 1, 0, 5, 7, 9, 6, 3, 2, 6, 5, 9, 6, 7, 9, 1, 7, 4, 7, 3, 3, 4, 5
Offset: 0

Views

Author

Hugo Pfoertner, Sep 06 2020

Keywords

Comments

This is the area of the largest semicircle that can be inscribed in the unit square.

Examples

			0.53901208445264722135616816971712125536226481937393701675404256301...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi*[3-Sqrt[8]], 10, 120][[1]] (* Omar E. Pol, Sep 06 2020 *)
  • PARI
    Pi*(3-2*sqrt(2))

Formula

Equals A000796*(3 - A010466) = A000796*(A157259 - 4). - Omar E. Pol, Sep 06 2020
Showing 1-9 of 9 results.