cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A090488 Decimal expansion of 2 + 2*sqrt(2).

Original entry on oeis.org

4, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Side length of smallest square containing five circles of radius 1. - Charles R Greathouse IV, Apr 05 2011
Equals n + n/(n +n/(n +n/(n +....))) for n = 4. See also A090388. - Stanislav Sykora, Jan 23 2014
Also the area of a regular octagon with unit edge length. - Stanislav Sykora, Apr 12 2015
The positive solution to x^2 - 4*x - 4 = 0. The negative solution is -1 * A163960 = -0.82842... . - Michal Paulovic, Dec 12 2023

Examples

			4.828427124746190097603377448419396157139343750...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Cf. Areas of other regular polygons: A120011, A102771, A104956, A178817, A256853, A178816, A256854, A178809.

Programs

Formula

Equals 1 + A086178 = 2*A014176. - R. J. Mathar, Sep 03 2007
From Michal Paulovic, Dec 12 2023: (Start)
Equals A010466 + 2.
Equals A156035 - 1.
Equals A157258 - 5.
Equals A163960 + 4.
Equals A365823 - 2.
Equals [4; 1, 4, ...] (periodic continued fraction expansion).
Equals sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * ...)))). (End)

Extensions

Better definition from Rick L. Shepherd, Jul 02 2004

A129288 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 41)^2 = y^2.

Original entry on oeis.org

0, 36, 39, 123, 319, 336, 820, 1960, 2059, 4879, 11523, 12100, 28536, 67260, 70623, 166419, 392119, 411720, 970060, 2285536, 2399779, 5654023, 13321179, 13987036, 32954160, 77641620, 81522519, 192071019, 452528623, 475148160, 1119472036
Offset: 1

Views

Author

Mohamed Bouhamida, May 26 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+41, y).
Corresponding values y of solutions (x, y) are in A157257.
lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (7 + 2*sqrt(2))/(7 - 2*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3 + 2*sqrt(2))*(7 - 2*sqrt(2))^2/(7 + 2*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157257, A001652, A156035 (decimal expansion of 3 + 2*sqrt(2)), A157258 (decimal expansion of 7 + 2*sqrt(2)), A157259 (decimal expansion of 7 - 2*sqrt(2)), A157260 (decimal expansion of (7 + 2*sqrt(2))/(7 - 2*sqrt(2))).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(36+3*x+84*x^2-20*x^3-x^4-20*x^5)/((1-x)*(1-6*x^3+ x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,36,39,123,319,336,820},40] (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    forstep(n=0, 1200000000, [3 ,1], if(issquare(2*n^2+82*n+1681), print1(n, ",")))
    

Formula

a(n) = 6*a(n-3) - a(n-6) + 82 for n > 6; a(1)=0, a(2)=36, a(3)=39, a(4)=123, a(5)=319, a(6)=336.
G.f.: x*(36 + 3*x + 84*x^2 - 20*x^3 - x^4 - 20*x^5)/((1-x)*(1 - 6*x^3 + x^6)).
a(3*k + 1) = 41*A001652(k) for k >= 0.

Extensions

Edited and extended by Klaus Brockhaus, Feb 26 2009

A157259 Decimal expansion of 7 - 2*sqrt(2).

Original entry on oeis.org

4, 1, 7, 1, 5, 7, 2, 8, 7, 5, 2, 5, 3, 8, 0, 9, 9, 0, 2, 3, 9, 6, 6, 2, 2, 5, 5, 1, 5, 8, 0, 6, 0, 3, 8, 4, 2, 8, 6, 0, 6, 5, 6, 2, 4, 9, 2, 4, 6, 1, 0, 3, 8, 5, 3, 6, 4, 6, 6, 4, 0, 5, 2, 4, 0, 1, 8, 5, 3, 5, 0, 4, 3, 0, 7, 5, 7, 8, 5, 9, 2, 2, 2, 9, 9, 2, 2, 4, 9, 3, 1, 3, 4, 4, 7, 1, 6, 8, 5, 4, 5, 2, 9, 9, 7
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {1, 2}, b = A129288.
lim_{n -> infinity} b(n)/b(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {0, 2}, b = A157257.

Examples

			7 - 2*sqrt(2) = 4.17157287525380990239...
		

Crossrefs

Cf. A129288, A157257, A157258 (decimal expansion of 7+2*sqrt(2)), A157260 (decimal expansion of (7+2*sqrt(2))/(7-2*sqrt(2))).

Programs

Formula

Equals 3 + Sum_{k>=0} binomial(2*k,k)/((k+1) * 8^k). - Amiram Eldar, Aug 03 2020
Equals 4 + exp(-arccosh(3)). - Amiram Eldar, Jul 06 2023
Equals 4 + (2-sqrt(2))/(2+sqrt(2)). - Davide Rotondo, Jun 08 2024

A163960 Decimal expansion of 2*(sqrt(2) - 1).

Original entry on oeis.org

8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5
Offset: 0

Views

Author

N. J. A. Sloane, Oct 02 2010

Keywords

Comments

Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)). (See A195284.) - Clark Kimberling, Sep 14 2011

Examples

			0.82842712474619009760337744841939615713934375075389614635335...
		

References

  • J. M. Steele, Probability Theory and Combinatorial Optimization, SIAM, 1997, p. 3.

Crossrefs

Essentially the same digit sequence as A010466, A086178, A090488 and A157258.

Programs

Formula

Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)/((k+1) * 4^k). - Amiram Eldar, May 06 2022
Equals Sum_{k>=1} (-1)^(k+1)/A084158(k). - Amiram Eldar, Dec 02 2024

A157257 Positive numbers y such that y^2 is of the form x^2+(x+41)^2 with integer x.

Original entry on oeis.org

29, 41, 85, 89, 205, 481, 505, 1189, 2801, 2941, 6929, 16325, 17141, 40385, 95149, 99905, 235381, 554569, 582289, 1371901, 3232265, 3393829, 7996025, 18839021, 19780685, 46604249, 109801861, 115290281, 271629469, 639972145, 671961001
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

(-20, a(1)) and (A129288(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+41)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (7+2*sqrt(2))/(7-2*sqrt(2)) for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(7-2*sqrt(2))^2/(7+2*sqrt(2))^2 for n mod 3 = 1.

Examples

			(-20, a(1)) = (-20, 29) is a solution: (-20)^2+(-20+41)^2 = 400+441 = 841 = 29^2.
(A129288(1), a(2)) = (0, 41) is a solution: 0^2+(0+41)^2 = 1681 = 41^2.
(A129288(3), a(4)) = (39, 89) is a solution: 39^2+(39+41)^2 = 1521+6400 = 7921 = 89^2.
		

Crossrefs

Cf. A129288, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157258 (decimal expansion of 7+2*sqrt(2)), A157259 (decimal expansion of 7-2*sqrt(2)), A157260 (decimal expansion of (7+2*sqrt(2))/(7-2*sqrt(2))).

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6))) // G. C. Greubel, Feb 04 2018
  • Mathematica
    CoefficientList[Series[(1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6), {x,0,50}], x] (* G. C. Greubel, Feb 04 2018 *)
  • PARI
    {forstep(n=-20, 500000000, [3 ,1], if(issquare(n^2+(n+41)^2, &k), print1(k, ",")))}
    
  • PARI
    x='x+O('x^30); Vec((1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+ x^6)) \\ G. C. Greubel, Feb 04 2018
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=29, a(2)=41, a(3)=85, a(4)=89, a(5)=205, a(6)=481.
G.f.: (1-x)*(29+70*x+155*x^2+70*x^3+29*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 41*A001653(k) for k >= 1.

A157260 Decimal expansion of (7 + 2*sqrt(2))/(7 - 2*sqrt(2)).

Original entry on oeis.org

2, 3, 5, 6, 0, 4, 8, 2, 8, 6, 4, 9, 8, 6, 9, 9, 0, 5, 7, 7, 1, 8, 2, 2, 6, 4, 4, 5, 8, 0, 1, 7, 4, 5, 0, 2, 9, 2, 6, 7, 0, 9, 2, 9, 8, 8, 0, 6, 2, 3, 0, 6, 0, 0, 1, 1, 9, 3, 8, 3, 0, 0, 6, 4, 9, 6, 9, 2, 8, 0, 7, 1, 6, 9, 9, 8, 5, 1, 2, 1, 2, 4, 0, 9, 2, 9, 4, 7, 5, 8, 4, 4, 1, 8, 8, 7, 7, 1, 7, 1, 6, 2, 3, 9, 1
Offset: 1

Views

Author

Klaus Brockhaus, Feb 26 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A129288.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A157257.

Examples

			(7 +2*sqrt(2))/(7 -2*sqrt(2)) = 2.35604828649869905771...
		

Crossrefs

Cf. A129288, A157257, A157258 (decimal expansion of 7+2*sqrt(2)), A157259 (decimal expansion of 7-2*sqrt(2)).
Cf. A157300 (decimal expansion of (1683+58*sqrt(2))/41^2). - Klaus Brockhaus, May 01 2009

Programs

  • Magma
    [(7+2*Sqrt(2))/(7-2*Sqrt(2))]; // G. C. Greubel, Nov 28 2017
  • Mathematica
    RealDigits[(7 + 2*Sqrt[2])/(7 - 2*Sqrt[2]), 10, 50][[1]] (* G. C. Greubel, Nov 28 2017 *)
  • PARI
    (7+2*sqrt(2))/(7-2*sqrt(2)) \\ G. C. Greubel, Nov 28 2017
    

Formula

Equals (57 + 28*sqrt(2))/41. - Klaus Brockhaus, May 01 2009

A365823 Decimal expansion of 2*(2 + sqrt(2)).

Original entry on oeis.org

6, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2023

Keywords

Comments

The greater one of the solutions to x^2 - 8 * x + 8 = 0. The other solution is A157259 - 3 = 1.17157... . - Michal Paulovic, Nov 14 2023

Examples

			6.8284271247461900976033774484193961571393437507538961...
		

Crossrefs

Essentially the same as A157258, A090488, A086178 and A010466.

Programs

  • Maple
    evalf(4+sqrt(8), 130);  # Alois P. Heinz, Nov 13 2023
  • Mathematica
    First[RealDigits[2*(2 + Sqrt[2]), 10, 99]] (* Stefano Spezia, Nov 11 2023 *)
  • PARI
    \\ Works in v2.13 and higher; n = 100 decimal places
    my(n=100); digits(floor(10^n*(4+quadgen(32)))) \\ Michal Paulovic, Nov 14 2023

Formula

Equals 2*sqrt(2)*(1 + sqrt(2)) = 2*(2 + sqrt(2)). This is an integer in the quadratic number field Q(sqrt(2)).
Equals lim_{n->oo} A057084(n + 1)/A057084(n).
Equals continued fraction with periodic term [[6], [1, 4]]. - Peter Luschny, Nov 13 2023
Equals -3+A157258 = 1+A156035 = 2+A090488 = 3+A086178 = 4+A010466 = 6+A163960. - Alois P. Heinz, Nov 15 2023
Showing 1-7 of 7 results.