cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Felix Tubiana

Felix Tubiana's wiki page.

Felix Tubiana has authored 37 sequences. Here are the ten most recent ones:

A178356 Fibonacci numbers whose successive digits decrease by 1.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 21, 987
Offset: 1

Author

Felix Tubiana, May 25 2010

Keywords

Comments

Only need to consider the Fibonacci numbers less than 9876543210.

Crossrefs

Programs

  • Mathematica
    Join[{0,1,2,3,5,8},Select[Fibonacci[Range[250]],Union[Differences[ IntegerDigits[#]]]=={-1}&]] (* Harvey P. Dale, Sep 14 2011 *)
  • PARI
    n=0;while((f=fibonacci(n))<=9876543210,if(is(f),print1(f", "));n++) \\ Charles R Greathouse IV, Sep 14 2011

Formula

{ A000045 } intersect { A138142 }. - Alois P. Heinz, Jul 05 2022

Extensions

Definition clarified by Harvey P. Dale, Sep 14 2011

A178355 Fibonacci numbers with digits increased by 1.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 34, 89
Offset: 1

Author

Felix Tubiana, May 25 2010

Keywords

Comments

Fibonacci numbers such that they are either one-digit numbers or their digits all have differences of 1. - Harvey P. Dale, Jun 09 2022

Crossrefs

Formula

{ A000045 } intersect { A138141 }. - Alois P. Heinz, Jul 05 2022

Extensions

Offset set to 1 by Alois P. Heinz, Jul 05 2022

A167231 Append three digits, each increasing by one modulo 10 from the last digit of the nonnegative integers. 0 -> 123, 1 -> 1234 2 -> 2345, ... , 9 -> 9012, 10 -> 10123, etc.

Original entry on oeis.org

123, 1234, 2345, 3456, 4567, 5678, 6789, 7890, 8901, 9012, 10123, 11234, 12345, 13456, 14567, 15678, 16789, 17890, 18901, 19012, 20123, 21234, 22345, 23456, 24567, 25678, 26789, 27890, 28901, 29012, 30123, 31234, 32345, 33456, 34567, 35678, 36789, 37890, 38901
Offset: 0

Author

Felix Tubiana, Oct 30 2009

Keywords

Programs

  • Maple
    a:= n-> (d-> parse(cat(n, irem(d+i, 10)$i=1..3)))(irem(n, 10)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 05 2022
  • Python
    def a(n): return int(str(n) + "".join(str((n%10+1+i)%10) for i in range(3)))
    print([a(n) for n in range(39)]) # Michael S. Branicky, Jul 05 2022

Formula

a(n) = 1000n + O(1).
G.f.: (988*x^10 +111*x^9 +1011*x^8 +1101*x^7 +1111*x^6 +1111*x^5 +1111*x^4 +1111*x^3 +1111*x^2 +1111*x +123) / (x^11 -x^10 -x +1). - Alois P. Heinz, Jul 05 2022

Extensions

More terms from Alois P. Heinz, Jul 05 2022

A167208 Append two digits, each increasing by one modulo 10 from the last digit of the positive integers. 0 -> 12 1 -> 123 2 -> 234 .. 9 -> 901 10 -> 1012.

Original entry on oeis.org

12, 123, 234, 345, 456, 567, 678, 789, 890, 901, 1012, 1123, 1234, 1345, 1456, 1567, 1678, 1789, 1890, 1901, 2012, 2123, 2234, 2345, 2456, 2567, 2678, 2789, 2890, 2901, 3012, 3123, 3234, 3345, 3456, 3567, 3678, 3789, 3890, 3901, 4012, 4123
Offset: 0

Author

Felix Tubiana, Oct 30 2009

Keywords

A138714 Add 1, modulo 10, to the decimal expansion of e, A001113.

Original entry on oeis.org

3, 8, 2, 9, 3, 9, 2, 9, 3, 9, 5, 6, 0, 1, 5, 6, 3, 4, 6, 4, 7, 1, 3, 9, 8, 5, 8, 2, 4, 6, 3, 7, 7, 3, 5, 0, 8, 8, 6, 8, 3, 5, 8, 1, 0, 4, 7, 0, 0, 0, 6, 0, 6, 8, 5, 0, 7, 7, 0, 7, 8, 7, 3, 8, 8, 3, 5, 1, 8, 7, 7, 4, 1, 4, 6, 4, 6, 5, 8, 6, 0, 5, 6, 8, 2, 4, 9, 3, 2, 8, 9, 6, 3, 6, 2, 7, 7, 5, 3, 8, 5, 3, 8, 5, 7
Offset: 1

Author

Felix Tubiana, May 15 2008

Keywords

Examples

			3.82939293956015634647139858...
		

Crossrefs

Programs

  • Mathematica
    Mod[# + 1, 10] & /@ First@ RealDigits@ N[E, 105] (* Michael De Vlieger, Apr 01 2015 *)
  • Sage
    [(floor((1+e*10^n))%10) for n in range(105)] # Danny Rorabaugh, Apr 01 2015

Extensions

Offset set to 1 by Alois P. Heinz, Jul 05 2022

A101440 Replace each digit of n with 1 followed by n 0's: 0 -> 1, 1 -> 10, 2 -> 100, ..., 9 -> 1000000000, 10 -> 101, 11 -> 1010, 12 -> 10100, etc. Expanded number is then converted from binary to decimal: 0 -> 1 -> 1, 1 -> 10 -> 2, 2 -> 100 -> 4, 9 -> 1000000000 -> 512, 10 -> 101 -> 5, etc.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 8704, 33, 66, 132, 264, 528, 1056, 2112, 4224, 8448, 16896, 65, 130, 260, 520, 1040
Offset: 0

Author

Felix Tubiana, Jan 18 2005

Keywords

Examples

			a(123) = 328 : 123 -> 101001000 -> 328.
		

A090915 Permutation of natural numbers arising from a square spiral.

Original entry on oeis.org

1, 8, 7, 6, 5, 4, 3, 2, 9, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 25, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 49, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58
Offset: 1

Author

Felix Tubiana, Feb 26 2004

Keywords

Comments

Write out the natural numbers in a square counterclockwise spiral:
.
17--16--15--14--13
| |
18 5---4---3 12
| | | |
19 6 1---2 11
| | |
20 7---8---9--10
|
21--22--23--24--25
.
Now read off the numbers in a square clockwise spiral: 1 -> 8 -> 7 -> 6 -> 5 -> 4 -> 3 -> 2 -> 9 -> etc.

Programs

  • Mathematica
    With[{x = Floor[(Floor[Sqrt[n-1]]+1)/2]}, Table[If[n==(2*x+1)^2, n, 8*x^2 -n+2], {n, 1, 75}]] (* G. C. Greubel, Feb 05 2019 *)
  • PARI
    {s(n) = ((sqrtint(n-1)+1)/2)\1};
    for(n=1,75, print1(if(n == (2*s(n)+1)^2, n, 8*s(n)^2-n+2), ", ")) \\ G. C. Greubel, Feb 05 2019
  • Sage
    def a(n):
        x = (isqrt(n-1)+1)//2
        return n if n == (2*x+1)^2 else 8*x^2 + 2 - n
    [a(n) for n in (1..75)] # Eric M. Schmidt, May 18 2016
    

Extensions

Offset corrected by Eric M. Schmidt, May 18 2016

A090925 Permutation of natural numbers arising from a square spiral.

Original entry on oeis.org

1, 4, 5, 6, 7, 8, 9, 2, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 10, 11, 12, 13, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 26, 27, 28, 29, 30, 31, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Author

Felix Tubiana, Feb 26 2004

Keywords

Comments

Write out the natural numbers in a square counterclockwise spiral:
.
17--16--15--14--13
| |
18 5---4---3 12
| | | |
19 6 1---2 11
| | |
20 7---8---9--10
|
21--22--23--24--25
.
Now read off the numbers in a square counterclockwise spiral: 1 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9 -> 2 -> 3 -> 14 -> etc.

Programs

  • Mathematica
    With[{x = Floor[(Floor[Sqrt[n-1]]+1)/2]}, Table[If[n+2*x <= (2*x+1)^2, n +2*x, n-6*x], {n, 1, 75}]] (* G. C. Greubel, Feb 05 2019 *)
  • PARI
    {s(n) = ((sqrtint(n-1)+1)/2)\1};
    for(n=1,75, print1(if(n+2*s(n) <= (2*s(n)+1)^2, n +2*s(n), n - 6*s(n)), ", ")) \\ G. C. Greubel, Feb 05 2019
  • Sage
    def a(n):
        x = (isqrt(n-1)+1)//2
        return n + 2*x if n + 2*x <= (2*x+1)^2 else n - 6*x
    [a(n) for n in (1..75)] # Eric M. Schmidt, May 18 2016
    

Extensions

Offset corrected by Eric M. Schmidt, May 18 2016

A090929 Permutation of natural numbers arising from a square spiral.

Original entry on oeis.org

1, 8, 9, 2, 3, 4, 5, 6, 7, 22, 23, 24, 25, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 44, 45, 46, 47, 48, 49, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 74, 75, 76, 77, 78, 79, 80, 81, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
Offset: 1

Author

Felix Tubiana, Feb 26 2004

Keywords

Comments

Write out the natural numbers in a square counterclockwise spiral:
.
17--16--15--14--13
| |
18 5---4---3 12
| | | |
19 6 1---2 11
| | |
20 7---8---9--10
|
21--22--23--24--25
.
Now read off the numbers in a counterclockwise spiral: 1 -> 8 -> 9 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 22 -> etc.

Programs

  • Mathematica
    With[{x = Floor[(Floor[Sqrt[n-1]] +1)/2]}, Table[If[n +6*x <= (2*x+1)^2, n +6*x, n -2*x], {n, 1, 75}]] (* G. C. Greubel, Feb 05 2019 *)
  • PARI
    {s(n) = ((sqrtint(n-1)+1)/2)\1};
    for(n=1,75, print1(if(n+6*s(n) <= (2*s(n)+1)^2, n +6*s(n), n - 2*s(n)), ", ")) \\ G. C. Greubel, Feb 05 2019
  • Sage
    def a(n):
        x = (isqrt(n-1)+1)//2
        return n + 6*x if n + 6*x <= (2*x+1)^2 else n - 2*x
    [a(n) for n in (1..75)]
    # Eric M. Schmidt, May 18 2016
    

Extensions

Offset corrected by Eric M. Schmidt, May 18 2016

A090930 Permutation of natural numbers arising from a square spiral.

Original entry on oeis.org

1, 2, 9, 8, 7, 6, 5, 4, 3, 12, 11, 10, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 30, 29, 28, 27, 26, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 56, 55, 54, 53, 52, 51, 50, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66
Offset: 1

Author

Felix Tubiana, Feb 26 2004

Keywords

Comments

Write out the natural numbers in a square counterclockwise spiral:
.
17--16--15--14--13
| |
18 5---4---3 12
| | | |
19 6 1---2 11
| | |
20 7---8---9--10
|
21--22--23--24--25
.
Now read off the numbers in a clockwise spiral: 1 -> 2 -> 9 -> 8 -> 7 -> 6 -> 5 -> 4 -> 3 -> 12 -> etc.

Programs

  • Mathematica
    With[{x = Floor[(Floor[Sqrt[n-1]] +1)/2]}, Table[8*x^2 -n +2 +x*If[n <= 4*x^2 -2*x, -6, 2], {n, 1, 75}]] (* G. C. Greubel, Feb 05 2019 *)
  • PARI
    {s(n) = ((sqrtint(n-1)+1)/2)\1};
    for(n=1,75, print1(8*s(n)^2 -n +2 +s(n)*if(n <= 2*s(n)*(2*s(n)-1), -6, 2), ", ")) \\ G. C. Greubel, Feb 05 2019
  • Sage
    def a(n):
        x = (isqrt(n-1)+1)//2
        return 8*x^2 + (-6 if n <= 4*x^2 - 2*x else 2)*x + 2 - n
    [a(n) for n in (1..75)]
    # Eric M. Schmidt, May 18 2016
    

Extensions

Offset corrected by Eric M. Schmidt, May 18 2016