cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A156035 Decimal expansion of 3 + 2*sqrt(2).

Original entry on oeis.org

5, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7, 0, 0, 2
Offset: 1

Views

Author

Klaus Brockhaus, Feb 02 2009

Keywords

Comments

Limit_{n -> oo} b(n+1)/b(n) = 3+2*sqrt(2) for b = A155464, A155465, A155466.
Limit_{n -> oo} b(n)/b(n-1) = 3+2*sqrt(2) for b = A001652, A001653, A002315, A156156, A156157, A156158. - Klaus Brockhaus, Sep 23 2009
From Richard R. Forberg, Aug 14 2013: (Start)
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 6*b(n-1) - b(n-2), for any initial values of b(0) and b(1), converge to this ratio.
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 5*b(n-1) + 5*b(n-2) + b(n-3), for all b(0), b(1) and b(2) also converge to 3 + 2*sqrt(2). For example see A084158 (Pell Triangles).
Ratios of alternating values, b(n+2)/b(n), for all sequences of the form b(n) = 2*b(n-1) + b(n-2), also converge to 3 + 2*sqrt(2). These include A000129 (Pell Numbers). Also see A014176. (End)
Let ABCD be a square inscribed in a circle. When P is the midpoint of the arc AB, then the ratio (PC*PD)/(PA*PB) is equal to 3+2*sqrt(2). See the Mathematical Reflections link. - Michel Marcus, Jan 10 2017
Limit of ratios of successive terms of A001652 when n-> infinity. - Harvey P. Dale, Jun 16 2017; improved by Bernard Schott, Feb 28 2022
A quadratic integer with minimal polynomial x^2 - 6x + 1. - Charles R Greathouse IV, Jul 11 2020
Ratio between radii of the large circumscribed circle R and the small internal circle r drawn on the Sangaku tablet at Isaniwa Jinjya shrine in Ehime Prefecture (pictures in links). - Bernard Schott, Feb 25 2022

Examples

			3 + 2*sqrt(2) = 5.828427124746190097603377448...
		

References

  • Diogo Queiros-Condé and Michel Feidt, Fractal and Trans-scale Nature of Entropy, Iste Press and Elsevier, 2018, page 45.

Crossrefs

Cf. A002193 (sqrt(2)), A090488, A010466, A014176.
Cf. A104178 (decimal expansion of log_10(3+2*sqrt(2))).
Cf. A242412 (sangaku).

Programs

Formula

Equals 1 + A090488 = 3 + A010466. - R. J. Mathar, Feb 19 2009
Equals exp(arccosh(3)), since arccosh(x) = log(x+sqrt(x^2-1)). - Stanislav Sykora, Nov 01 2013
Equals (1+sqrt(2))^2, that is, A014176^2. - Michel Marcus, May 08 2016
The periodic continued fraction is [5; [1, 4]]. - Stefano Spezia, Mar 17 2024

A104956 Decimal expansion of the area of the regular hexagon with circumradius 1.

Original entry on oeis.org

2, 5, 9, 8, 0, 7, 6, 2, 1, 1, 3, 5, 3, 3, 1, 5, 9, 4, 0, 2, 9, 1, 1, 6, 9, 5, 1, 2, 2, 5, 8, 8, 0, 8, 5, 5, 0, 4, 1, 4, 2, 0, 7, 8, 8, 0, 7, 1, 5, 5, 7, 0, 9, 4, 2, 0, 8, 3, 7, 1, 0, 4, 6, 9, 1, 7, 7, 8, 9, 9, 5, 2, 5, 3, 6, 3, 2, 0, 0, 0, 5, 5, 6, 2, 1, 7, 1, 9, 2, 8, 0, 1, 3, 5, 8, 7, 2, 8, 6, 3, 5, 1, 3, 4, 3
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Mar 30 2005

Keywords

Comments

Equivalently, the area in the complex plane of the smallest convex set containing all order-6 roots of unity.
Subtracting 2.5 (i.e., dropping the first two digits) we obtain 0.09807.... which is a limiting mean cluster density for a bond percolation model at probability 1/2 [Finch]. - R. J. Mathar, Jul 26 2007
This constant is also the minimum radius of curvature of the exponential curve (occurring at x = -log(2)/2 = -0.34657359...). - Jean-François Alcover, Dec 19 2016
Luminet proves that this is the critical impact parameter of a bare black hole, in multiples of the Schwarzschild radius. That is, light from a distant source coming toward a black hole is captured by the black hole at smaller distances and deflected at larger distances. - Charles R Greathouse IV, May 21 2022
For any triangle ABC, sin(A) + sin(B) + sin(C) <= 3*sqrt(3)/2, equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - Bernard Schott, Sep 16 2022
Surface area of a triangular bipyramid (Johnson solid J_12) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			2.59807621135331594029116951225880855041420788071557094208371046917789952536320...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.24, p. 412.

Crossrefs

Cf. Areas of other regular polygons: A120011, A102771, A178817, A090488, A256853, A178816, A256854, A178809.

Programs

  • Mathematica
    Floor[n/2]*Sin[(2*Pi)/n] - Sin[(4*Pi*Floor[n/2])/n]/2 /. n -> 6
    RealDigits[(3*Sqrt[3])/2, 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    3*sqrt(3)/2 \\ G. C. Greubel, Jul 03 2017

Formula

Equals (3*sqrt(3))/2, that is, 2*A104954.
Equals Product_{k>=3} (((k - 1)^2*(k + 2))/((k + 1)^2*(k - 2)))^(k/2). - Antonio Graciá Llorente, Oct 13 2024

A120011 Decimal expansion of sqrt(3)/4.

Original entry on oeis.org

4, 3, 3, 0, 1, 2, 7, 0, 1, 8, 9, 2, 2, 1, 9, 3, 2, 3, 3, 8, 1, 8, 6, 1, 5, 8, 5, 3, 7, 6, 4, 6, 8, 0, 9, 1, 7, 3, 5, 7, 0, 1, 3, 1, 3, 4, 5, 2, 5, 9, 5, 1, 5, 7, 0, 1, 3, 9, 5, 1, 7, 4, 4, 8, 6, 2, 9, 8, 3, 2, 5, 4, 2, 2, 7, 2, 0, 0, 0, 0, 9, 2, 7, 0, 2, 8, 6, 5, 4, 6, 6, 8, 9, 3, 1, 2, 1, 4, 3
Offset: 0

Views

Author

Eric Desbiaux, Jul 04 2008

Keywords

Comments

Area of equilateral triangle of side 1.
Quadratic number with denominator 4 and minimal polynomial 16x^2 - 3. - Charles R Greathouse IV, Jun 30 2021
With offset 1, surface area of a pentagonal bipyramid (Johnson solid J_13) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			0.43301270189221932338186158537646809173570131345259515701395....
		

Crossrefs

Cf. A010527.
Cf. Areas of higher regular polygons: A102771, A104956, A178817, A090488, A256853, A178816, A256854, A178809.

Programs

A090388 Decimal expansion of 1 + sqrt(3).

Original entry on oeis.org

2, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

1 + sqrt(3) is the length of the minimal Steiner network that connects the four vertices of a unit square. - Lekraj Beedassy, May 02 2008
This is the case n = 12 in the identity (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)) = 1 + 2*cos(2*Pi/n). - Bruno Berselli, Dec 14 2012
Equals n + n/(n + n/(n + n/(n + ...))) for n = 2. - Stanislav Sykora, Jan 23 2014
A non-optimal solution to the problem of finding the length of shortest fence that protects privacy of a square garden [Kawohl]. Cf. A256965. - N. J. A. Sloane, Apr 14 2015
Perimeter of a 30-60-90 triangle with longest leg equal to 1. - Wesley Ivan Hurt, Apr 09 2016
Length of the second shortest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020
Surface area of a square pyramid (Johnson solid J_1) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			2.7320508075688772...
		

Crossrefs

Cf. n + n/(n + n/(n + ...)): A090458 (n = 3), A090488 (n = 4), A090550 (n = 5), A092294 (n = 6), A092290 (n = 7), A090654 (n = 8), A090655 (n = 9), A090656 (n = 10). - Stanislav Sykora, Jan 23 2014
Cf., also A256965.

Programs

Formula

Equals 1 + A002194. - R. J. Mathar, Oct 16 2015
Equals A019973 -1 . - R. J. Mathar, May 25 2023

Extensions

Better definition from Rick L. Shepherd, Jul 02 2004

A102771 Decimal expansion of area of a regular pentagon with unit edge length.

Original entry on oeis.org

1, 7, 2, 0, 4, 7, 7, 4, 0, 0, 5, 8, 8, 9, 6, 6, 9, 2, 2, 7, 5, 9, 0, 1, 1, 9, 7, 7, 3, 8, 8, 6, 0, 9, 5, 9, 9, 4, 0, 7, 3, 7, 4, 1, 7, 0, 0, 1, 0, 1, 9, 8, 3, 2, 9, 2, 0, 7, 0, 9, 4, 7, 0, 7, 0, 2, 3, 8, 6, 8, 9, 9, 2, 2, 0, 8, 9, 6, 6, 2, 3, 1, 3, 3, 2, 4, 4, 1, 2, 4, 1, 3, 8, 7, 5, 8, 7, 7, 4
Offset: 1

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Feb 10 2005

Keywords

Examples

			1.720477400588966922759011977...
		

Crossrefs

Cf. Areas of other regular polygons: A120011, A104956, A178817, A090488, A256853, A178816, A256854, A178809.

Programs

  • Mathematica
    RealDigits[(5/4)*Sqrt[GoldenRatio^3/Sqrt[5]], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    5/(4*tan(Pi/5)) \\ Michel Marcus, Mar 25 2015

Formula

Equals sqrt(25 + 10*sqrt(5)) / 4.
Equals (3*phi+1)*sqrt(3-phi) with the golden section phi = (1 + sqrt(5))/2. - Wolfdieter Lang, Jan 25 2013
Equals 5/(4*tan(Pi/5)). - Michel Marcus, Mar 25 2015
Equals (5/4)*sqrt(phi^3/sqrt(5)). - G. C. Greubel, Jul 03 2017

Extensions

Corrected the title. - Stanislav Sykora, Apr 12 2015

A090550 Decimal expansion of solution to n/x = x - n for n = 5.

Original entry on oeis.org

5, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2, 1, 6, 1, 2, 5, 6, 8, 1, 7, 3, 4, 1, 2, 4
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x - n with n = 1 gives the Golden Ratio = 1.6180339887...
Equals n + n/(n + n/(n + n/(n + ....))) for n = 5. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			5.85410196624968454...
		

Crossrefs

Cf. n + n/(n + n/(n + ...)): A090388 (n = 2), A090458 (n = 3), A090488 (n = 4), A092294 (n = 6), A092290 (n = 7), A090654 (n = 8), A090655 (n = 9), A090656 (n = 10). - Stanislav Sykora, Jan 23 2014

Programs

  • Mathematica
    RealDigits[(5 + 3 Sqrt[5])/2, 10, 120][[1]] (* Harvey P. Dale, Nov 27 2013 *)
  • PARI
    (5 + 3*sqrt(5))/2 \\ G. C. Greubel, Jul 03 2017

Formula

n/x = x - n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 5: x = (5 + sqrt(45))/2 = 5.85410196624968454...
Equals (5 + 3*sqrt(5))/2 = 1 + 3*phi = sqrt(5)*(phi)^2, where phi is the golden ratio. - G. C. Greubel, Jul 03 2017
Equals 2*phi^3 - phi^2. - Michel Marcus, Apr 20 2020
Minimal polynomial is x^2 - 5x - 5 (this number is an algebraic integer). - Alonso del Arte, Apr 20 2020(n).
Equals lim_{n->oo} A057088(n+1)/A057088(n) = 1 + 3*phi. - Wolfdieter Lang, Nov 16 2023

A178809 Decimal expansion of the area of the regular 12-gon (dodecagon) of edge length 1.

Original entry on oeis.org

1, 1, 1, 9, 6, 1, 5, 2, 4, 2, 2, 7, 0, 6, 6, 3, 1, 8, 8, 0, 5, 8, 2, 3, 3, 9, 0, 2, 4, 5, 1, 7, 6, 1, 7, 1, 0, 0, 8, 2, 8, 4, 1, 5, 7, 6, 1, 4, 3, 1, 1, 4, 1, 8, 8, 4, 1, 6, 7, 4, 2, 0, 9, 3, 8, 3, 5, 5, 7, 9, 9, 0, 5, 0, 7, 2, 6, 4, 0, 0, 1, 1, 1, 2, 4, 3, 4, 3, 8, 5, 6, 0, 2, 7, 1, 7, 4, 5, 7, 2, 7, 0, 2, 6, 8
Offset: 2

Views

Author

Keywords

Comments

Surface area of a regular hexagonal prism with unit side length and height. - Wesley Ivan Hurt, May 04 2021

Examples

			11.196152422706631880582339024517617100828415761431141884167420938355...
		

Crossrefs

Programs

Formula

Equals 6+3*sqrt(3).
Equals 1 + A176532 = 6 + A010482. - R. J. Mathar, Jun 25 2010

Extensions

Offset corrected and keyword:cons inserted by R. J. Mathar, Jun 25 2010

A090458 Decimal expansion of (3 + sqrt(21))/2.

Original entry on oeis.org

3, 7, 9, 1, 2, 8, 7, 8, 4, 7, 4, 7, 7, 9, 2, 0, 0, 0, 3, 2, 9, 4, 0, 2, 3, 5, 9, 6, 8, 6, 4, 0, 0, 4, 2, 4, 4, 4, 9, 2, 2, 2, 8, 2, 8, 8, 3, 8, 3, 9, 8, 5, 9, 5, 1, 3, 0, 3, 6, 2, 1, 0, 6, 1, 9, 5, 3, 4, 3, 4, 2, 1, 2, 7, 7, 3, 8, 8, 5, 4, 4, 3, 3, 0, 2, 1, 8, 0, 7, 7, 9, 7, 4, 6, 7, 2, 2, 5, 1, 6, 3
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Decimal expansion of the solution to n/x = x-n for n-3. n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 3: x = (3 + sqrt(21))/2 = 3.79128784747792...
x=3.7912878474... is the shape of a rectangle whose geometric partition (as at A188635) consists of 3 squares, then 1 square, then 3 squares, etc., matching the continued fraction of x, which is [3,1,3,1,3,1,3,1,3,1,...]. (See the Mathematica program below.) - Clark Kimberling, May 05 2011
x appears to be the limit for n to infinity of the ratio of the number of even numbers that take n steps to reach 1 to the number of odd numbers that take n steps to reach 1 in the Collatz iteration. As A005186(n-1) is the number of even numbers that take n steps to reach 1, this means x = lim A005186(n-1)/A176866(n). - Markus Sigg, Oct 20 2020
From Wolfdieter Lang, Sep 02 2022: (Start)
This integer in the quadratic number field Q(sqrt(21)) equals the (real) cube root of 27 + 6*sqrt(21) = 54.4954541... . See Euler, Elements of Algebra, Article 748 or Algebra (in German) p. 306, Kapitel 12, 187.
Subtracting 3 from the present number gives the (real) cube root of
-27 + 6*sqrt(21) = 0.4954541... . (End)

Examples

			3.79128784747792...
		

References

  • Leonhard Euler, Vollständige Anleitung zur Algebra, (1770), Reclam, Leipzig, 1883, p.306, Kapitel 12, 187.

Crossrefs

Of the same type as this: A090388 (n=2), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10).
Equals 3*A176014 (constant).
Cf. A356034.

Programs

Formula

Equals (27 + 6*sqrt(21))^(1/3). - Wolfdieter Lang, Sep 01 2022

Extensions

Additional comments from Rick L. Shepherd, Jul 02 2004

A178817 Decimal expansion of the area of the regular 7-gon (heptagon) of edge length 1.

Original entry on oeis.org

3, 6, 3, 3, 9, 1, 2, 4, 4, 4, 0, 0, 1, 5, 8, 8, 9, 9, 2, 5, 3, 6, 1, 9, 3, 0, 0, 7, 6, 0, 0, 2, 2, 0, 5, 7, 8, 7, 3, 5, 0, 1, 0, 3, 6, 1, 5, 9, 5, 4, 4, 4, 9, 1, 7, 1, 4, 5, 9, 8, 0, 4, 0, 9, 5, 1, 0, 2, 9, 9, 8, 5, 2, 3, 6, 3, 0, 4, 6, 0, 0, 5, 5, 6, 2, 7, 3, 0, 7, 1, 5, 2, 9, 5, 8, 1, 0, 8, 9, 4, 3, 7, 1, 0, 4
Offset: 1

Views

Author

Keywords

Examples

			3.63391244400158899253619300760022057873501036159544491714598040951029...
		

Crossrefs

Cf. Areas of other regular polygons: A120011, A102771, A104956, A090488, A256853, A178816, A256854, A178809.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 7*Cot(Pi(R)/7)/4; // G. C. Greubel, Jan 22 2019
    
  • Maple
    evalf[120]((7/4)*cot(Pi/7)); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    RealDigits[7*Cot[Pi/7]/4, 10, 100][[1]]
  • PARI
    p=7; a=(p/4)*cotan(Pi/p)  \\ Set realprecision in excess. - Stanislav Sykora, Apr 12 2015
    
  • Sage
    numerical_approx(7*cot(pi/7)/4, digits=100) # G. C. Greubel, Jan 22 2019

Formula

Equals (7/4) * cot(Pi/7).
From Michal Paulovic, Dec 27 2022: (Start)
Equals 7 / (4 * tan(Pi/7)) = 7 / (4 * A343058).
Equals sqrt(7/3 * (35 + 2 * 196^(1/3) * ((13 - 3 * sqrt(3) * i)^(1/3) + (13 + 3 * sqrt(3) * i)^(1/3)))) / 4.
Equals sqrt(7/4) * sqrt(35/12 + (637/54 - sqrt(-2401/108))^(1/3) + (637/54 + sqrt(-2401/108))^(1/3)).
(End)
A root of the polynomial 4096*x^6 - 62720*x^4 + 115248*x^2 - 16807. - Joerg Arndt, Jan 02 2023

A256853 Decimal expansion of the area of a unit 9-gon.

Original entry on oeis.org

6, 1, 8, 1, 8, 2, 4, 1, 9, 3, 7, 7, 2, 9, 0, 0, 1, 2, 7, 2, 1, 3, 7, 4, 4, 0, 5, 9, 6, 1, 9, 7, 6, 3, 6, 1, 4, 9, 4, 1, 7, 1, 3, 3, 4, 8, 1, 3, 4, 3, 5, 8, 0, 9, 8, 3, 8, 6, 8, 6, 4, 2, 5, 5, 6, 6, 9, 7, 7, 1, 0, 7, 1, 2, 3, 3, 5, 8, 4, 6, 6, 4, 7, 6, 6, 3, 5, 9, 5, 5, 3, 3, 8, 9, 0, 7, 9, 1, 8, 4, 0, 9, 9, 0, 2
Offset: 1

Views

Author

Stanislav Sykora, Apr 12 2015

Keywords

Comments

From Michal Paulovic, May 09 2024: (Start)
This constant multiplied by the square of the side length of a regular enneagon equals the area of that enneagon.
9^2 divided by this constant equals 36 * tan(Pi/9) = 13.10292843... which is the perimeter and the area of an equable enneagon with its side length 4 * tan(Pi/9) = 1.45588093... . (End)

Examples

			6.181824193772900127213744059619763614941713348134358098386864...
		

Crossrefs

Cf. A000796, A019669, A019670, A019673, A019676, A019685, A019968, A120011 (p=3), A102771 (p=5), A104956 (p=6), A178817 (p=7), A090488 (p=8), A178816 (p=10), A256854 (p=11), A178809 (p=12).

Programs

  • Maple
    evalf(9 / (4 * tan(Pi/9)), 100); # Michal Paulovic, May 09 2024
  • Mathematica
    RealDigits[(9/4)*Cot[Pi/9], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    p=9; a=(p/4)*cotan(Pi/p)        \\ Use realprecision in excess

Formula

Equals (p/4)*cot(Pi/p), with p = 9.
From Michal Paulovic, May 09 2024: (Start)
Equals 9 * sqrt(2 / (1 - sin(5 * A000796 / 18)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019669 / 9)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019670 / 6)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019673 / 3)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019676 / 2)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(50 * A019685)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * Pi / 18)) - 1) / 4.
Equals 9 * sqrt(4 / (2 - i^(4/9) - i^(-4/9)) - 1) / 4.
Equals 9 * sqrt(1 / (8 - (-32 + sqrt(-3072))^(1/3) - (-32 - sqrt(-3072))^(1/3)) - 1/16). (End)
Largest of the 6 real-valued roots of 4096*x^6 -186624*x^4 +1154736*x^2 -177147 =0. - R. J. Mathar, Aug 29 2025
Showing 1-10 of 21 results. Next