cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A004187 a(n) = 7*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 7, 48, 329, 2255, 15456, 105937, 726103, 4976784, 34111385, 233802911, 1602508992, 10983760033, 75283811239, 516002918640, 3536736619241, 24241153416047, 166151337293088, 1138818207635569, 7805576116155895, 53500214605455696, 366695926122033977
Offset: 0

Views

Author

Keywords

Comments

Define the sequence T(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}= 0 . A004187 (with initial 0 omitted) is T(1,7).
This is a divisibility sequence.
For n>=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 7's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
a(n) and b(n) := A056854(n) are the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 5*(3*a(n))^2 = +4. see the cross-reference to A056854 below. - Wolfdieter Lang, Jun 26 2013
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4,5,6}. - Milan Janjic, Jan 25 2015
The digital root is A253298, which shares its digital root with A253368. - Peter M. Chema, Jul 04 2016
Lim_{n->oo} a(n+1)/a(n) = 2 + 3*phi = 1+ A090550 = 6.854101... - Wolfdieter Lang, Nov 16 2023

Examples

			a(2) = 7*a(1) - a(0) = 7*7 - 1 = 48. - _Michael B. Porter_, Jul 04 2016
		

Crossrefs

Cf. A000027, A001906, A001353, A004254, A001109, A049685, A033888. a(n)=sqrt((A056854(n)^2 - 4)/45).
Second column of array A028412.

Programs

  • Magma
    [Fibonacci(4*n)/3 : n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
    
  • Magma
    /* By definition: */ [n le 2 select n-1 else 7*Self(n-1)-Self(n-2): n in [1..23]]; // Bruno Berselli, Dec 24 2012
  • Maple
    seq(combinat:-fibonacci(4*n)/3, n = 0 .. 30); # Robert Israel, Jan 26 2015
  • Mathematica
    LinearRecurrence[{7,-1},{0,1},30] (* Harvey P. Dale, Jul 13 2011 *)
    CoefficientList[Series[x/(1 - 7*x + x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 23 2012 *)
  • Maxima
    a[0]:0$ a[1]:1$ a[n]:=7*a[n-1] - a[n-2]$ A004187(n):=a[n]$ makelist(A004187(n),n,0,30); /* Martin Ettl, Nov 11 2012 */
    
  • MuPAD
    numlib::fibonacci(4*n)/3 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    a(n)=fibonacci(4*n)/3 \\ Charles R Greathouse IV, Mar 09 2012
    
  • PARI
    concat(0, Vec(x/(1-7*x+x^2) + O(x^99))) \\ Altug Alkan, Jul 03 2016
    
  • Sage
    [lucas_number1(n,7,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [fibonacci(4*n)/3 for n in range(0, 21)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: x/(1-7*x+x^2).
a(n) = F(4*n)/3 = A033888(n)/3, where F=A000045 (the Fibonacci sequence).
a(n) = S(2*n-1, sqrt(9))/sqrt(9) = S(n-1, 7); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = Sum_{i = 0..n-1} C(2*n-1-i, i)*5^(n-i-1). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
[A049685(n-1), a(n)] = [1,5; 1,6]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = A167816(4*n). - Reinhard Zumkeller, Nov 13 2009
a(n) = (((7+sqrt(45))/2)^n-((7-sqrt(45))/2)^n)/sqrt(45). - Noureddine Chair, Aug 31 2011
a(n+1) = Sum_{k = 0..n} A101950(n,k)*6^k. - Philippe Deléham, Feb 10 2012
a(n) = (A081072(n)/3)-1. - Martin Ettl, Nov 11 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = (1/5)*(5 + 3*sqrt(5)).
Product {n >= 2} (1 - 1/a(n)) = (1/14)*(5 + 3*sqrt(5)). (End)
From Peter Bala, Apr 02 2015: (Start)
Sum_{n >= 1} a(n)*x^(2*n) = -A(x)*A(-x), where A(x) = Sum_{n >= 1} Fibonacci(2*n)* x^n.
1 + 5*Sum_{n >= 1} a(n)*x^(2*n) = F(x)*F(-x) = G(x)*G(-x), where F(x) = 1 + A(x) and G(x) = 1 + 5*A(x).
1 + Sum_{n >= 1} a(n)*x^(2*n) = H(x)*H(-x) = I(x)*I(-x), where H(x) = 1 + Sum_{n >= 1} Fibonacci(2*n + 3)*x^n and I(x) = 1 + x + x*Sum_{n >= 1} Fibonacci(2*n - 1)*x^n. (End)
E.g.f.: 2*exp(7*x/2)*sinh(3*sqrt(5)*x/2)/(3*sqrt(5)). - Ilya Gutkovskiy, Jul 03 2016
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*9^k*binomial(n+k, 2*k+1). - Peter Bala, Jul 17 2023
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k*7^(n-2*k)*binomial(n-k, k). - Greg Dresden, Aug 03 2024
From Peter Bala, Jul 22 2025: (Start)
The following products telescope:
Product {n >= 2} (1 + (-1)^n/a(n)) = (3/14)*(3 + sqrt(5)).
Product {n >= 1} (1 - (-1)^n/a(n)) = (1/3)*(3 + sqrt(5)).
Product_{n >= 1} (a(2*n) + 1)/(a(2*n) - 1) = (3/5)*sqrt(5). (End)

Extensions

Entry improved by comments from Michael Somos and Wolfdieter Lang, Aug 02 2000

A090388 Decimal expansion of 1 + sqrt(3).

Original entry on oeis.org

2, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

1 + sqrt(3) is the length of the minimal Steiner network that connects the four vertices of a unit square. - Lekraj Beedassy, May 02 2008
This is the case n = 12 in the identity (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)) = 1 + 2*cos(2*Pi/n). - Bruno Berselli, Dec 14 2012
Equals n + n/(n + n/(n + n/(n + ...))) for n = 2. - Stanislav Sykora, Jan 23 2014
A non-optimal solution to the problem of finding the length of shortest fence that protects privacy of a square garden [Kawohl]. Cf. A256965. - N. J. A. Sloane, Apr 14 2015
Perimeter of a 30-60-90 triangle with longest leg equal to 1. - Wesley Ivan Hurt, Apr 09 2016
Length of the second shortest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020
Surface area of a square pyramid (Johnson solid J_1) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			2.7320508075688772...
		

Crossrefs

Cf. n + n/(n + n/(n + ...)): A090458 (n = 3), A090488 (n = 4), A090550 (n = 5), A092294 (n = 6), A092290 (n = 7), A090654 (n = 8), A090655 (n = 9), A090656 (n = 10). - Stanislav Sykora, Jan 23 2014
Cf., also A256965.

Programs

Formula

Equals 1 + A002194. - R. J. Mathar, Oct 16 2015
Equals A019973 -1 . - R. J. Mathar, May 25 2023

Extensions

Better definition from Rick L. Shepherd, Jul 02 2004

A090488 Decimal expansion of 2 + 2*sqrt(2).

Original entry on oeis.org

4, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Side length of smallest square containing five circles of radius 1. - Charles R Greathouse IV, Apr 05 2011
Equals n + n/(n +n/(n +n/(n +....))) for n = 4. See also A090388. - Stanislav Sykora, Jan 23 2014
Also the area of a regular octagon with unit edge length. - Stanislav Sykora, Apr 12 2015
The positive solution to x^2 - 4*x - 4 = 0. The negative solution is -1 * A163960 = -0.82842... . - Michal Paulovic, Dec 12 2023

Examples

			4.828427124746190097603377448419396157139343750...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Cf. Areas of other regular polygons: A120011, A102771, A104956, A178817, A256853, A178816, A256854, A178809.

Programs

Formula

Equals 1 + A086178 = 2*A014176. - R. J. Mathar, Sep 03 2007
From Michal Paulovic, Dec 12 2023: (Start)
Equals A010466 + 2.
Equals A156035 - 1.
Equals A157258 - 5.
Equals A163960 + 4.
Equals A365823 - 2.
Equals [4; 1, 4, ...] (periodic continued fraction expansion).
Equals sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * ...)))). (End)

Extensions

Better definition from Rick L. Shepherd, Jul 02 2004

A090458 Decimal expansion of (3 + sqrt(21))/2.

Original entry on oeis.org

3, 7, 9, 1, 2, 8, 7, 8, 4, 7, 4, 7, 7, 9, 2, 0, 0, 0, 3, 2, 9, 4, 0, 2, 3, 5, 9, 6, 8, 6, 4, 0, 0, 4, 2, 4, 4, 4, 9, 2, 2, 2, 8, 2, 8, 8, 3, 8, 3, 9, 8, 5, 9, 5, 1, 3, 0, 3, 6, 2, 1, 0, 6, 1, 9, 5, 3, 4, 3, 4, 2, 1, 2, 7, 7, 3, 8, 8, 5, 4, 4, 3, 3, 0, 2, 1, 8, 0, 7, 7, 9, 7, 4, 6, 7, 2, 2, 5, 1, 6, 3
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Decimal expansion of the solution to n/x = x-n for n-3. n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 3: x = (3 + sqrt(21))/2 = 3.79128784747792...
x=3.7912878474... is the shape of a rectangle whose geometric partition (as at A188635) consists of 3 squares, then 1 square, then 3 squares, etc., matching the continued fraction of x, which is [3,1,3,1,3,1,3,1,3,1,...]. (See the Mathematica program below.) - Clark Kimberling, May 05 2011
x appears to be the limit for n to infinity of the ratio of the number of even numbers that take n steps to reach 1 to the number of odd numbers that take n steps to reach 1 in the Collatz iteration. As A005186(n-1) is the number of even numbers that take n steps to reach 1, this means x = lim A005186(n-1)/A176866(n). - Markus Sigg, Oct 20 2020
From Wolfdieter Lang, Sep 02 2022: (Start)
This integer in the quadratic number field Q(sqrt(21)) equals the (real) cube root of 27 + 6*sqrt(21) = 54.4954541... . See Euler, Elements of Algebra, Article 748 or Algebra (in German) p. 306, Kapitel 12, 187.
Subtracting 3 from the present number gives the (real) cube root of
-27 + 6*sqrt(21) = 0.4954541... . (End)

Examples

			3.79128784747792...
		

References

  • Leonhard Euler, Vollständige Anleitung zur Algebra, (1770), Reclam, Leipzig, 1883, p.306, Kapitel 12, 187.

Crossrefs

Of the same type as this: A090388 (n=2), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10).
Equals 3*A176014 (constant).
Cf. A356034.

Programs

Formula

Equals (27 + 6*sqrt(21))^(1/3). - Wolfdieter Lang, Sep 01 2022

Extensions

Additional comments from Rick L. Shepherd, Jul 02 2004

A090654 Decimal expansion of 4 + 2*sqrt(6).

Original entry on oeis.org

8, 8, 9, 8, 9, 7, 9, 4, 8, 5, 5, 6, 6, 3, 5, 6, 1, 9, 6, 3, 9, 4, 5, 6, 8, 1, 4, 9, 4, 1, 1, 7, 8, 2, 7, 8, 3, 9, 3, 1, 8, 9, 4, 9, 6, 1, 3, 1, 3, 3, 4, 0, 2, 5, 6, 8, 6, 5, 3, 8, 5, 1, 3, 4, 5, 0, 1, 9, 2, 0, 7, 5, 4, 9, 1, 4, 6, 3, 0, 0, 5, 3, 0, 7, 9, 7, 1, 8, 8, 6, 6, 2, 0, 9, 2, 8, 0, 4, 6, 9, 6
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n +n/(n +n/(n +n/(n +....))) for n = 8. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			8.898979485566356196394568149...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Essentially the same as A010480.

Programs

  • Mathematica
    RealDigits[4 + 2*Sqrt[6], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    4 + 2*sqrt(6) \\ G. C. Greubel, Jul 03 2017

A092290 Decimal expansion of solution to n/x = x-n for n = 7.

Original entry on oeis.org

7, 8, 8, 7, 4, 8, 2, 1, 9, 3, 6, 9, 6, 0, 6, 1, 0, 3, 0, 2, 0, 3, 1, 9, 4, 1, 5, 3, 7, 0, 8, 1, 5, 4, 7, 8, 0, 4, 3, 7, 9, 3, 8, 4, 1, 3, 7, 7, 7, 2, 5, 1, 7, 9, 5, 4, 6, 3, 8, 4, 7, 8, 1, 4, 8, 9, 1, 3, 8, 2, 3, 2, 3, 1, 0, 9, 6, 5, 3, 1, 4, 0, 8, 3, 7, 8, 4, 6, 5, 7, 8, 5, 3, 4, 3, 5, 2, 8, 7, 7, 9
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
Equals n +n/(n +n/(n +n/(n +....))) for n = 7. See also A090388. - Stanislav Sykora, Jan 23 2014

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

Formula

n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 7: x = (7 + sqrt(77))/2 = 7.88748219369606...

A092294 Decimal expansion of 3 + sqrt(15).

Original entry on oeis.org

6, 8, 7, 2, 9, 8, 3, 3, 4, 6, 2, 0, 7, 4, 1, 6, 8, 8, 5, 1, 7, 9, 2, 6, 5, 3, 9, 9, 7, 8, 2, 3, 9, 9, 6, 1, 0, 8, 3, 2, 9, 2, 1, 7, 0, 5, 2, 9, 1, 5, 9, 0, 8, 2, 6, 5, 8, 7, 5, 7, 3, 7, 6, 6, 1, 1, 3, 4, 8, 3, 0, 9, 1, 9, 3, 6, 9, 7, 9, 0, 3, 3, 5, 1, 9, 2, 8, 7, 3, 7, 6, 8, 5, 8, 6, 7, 3, 5, 1, 7, 9
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n +n/(n +n/(n +n/(n +....))) for n = 6. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			6.87298334620741688...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

Formula

Equals A010472 plus 3. - R. J. Mathar, Sep 08 2008
Equals 1/A176016 + 6. - Hugo Pfoertner, Mar 19 2024

A090655 Decimal expansion of solution to n/x = x-n for n = 9.

Original entry on oeis.org

9, 9, 0, 8, 3, 2, 6, 9, 1, 3, 1, 9, 5, 9, 8, 3, 9, 3, 9, 6, 7, 8, 8, 3, 1, 9, 0, 1, 2, 0, 5, 7, 4, 3, 9, 1, 9, 3, 7, 6, 9, 4, 4, 8, 6, 0, 7, 6, 7, 8, 6, 9, 3, 1, 9, 0, 6, 5, 6, 7, 9, 5, 8, 4, 3, 4, 0, 7, 5, 0, 4, 2, 2, 4, 3, 9, 5, 1, 5, 6, 6, 7, 8, 0, 6, 9, 2, 8, 6, 2, 3, 0, 2, 7, 7, 3, 6, 0, 7, 6, 5
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
Equals n +n/(n +n/(n +n/(n +....))) for n = 9. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			9.90832691319598...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

  • Mathematica
    RealDigits[(3/2)*(3+Sqrt[13]), 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    (3/2)*(3 + sqrt(13)) \\ G. C. Greubel, Jul 03 2017

Formula

n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 9: x = (9 + sqrt(117))/2 = 9.90832691319598...
Equals (3/2)*(3 + sqrt(13)). - G. C. Greubel, Jul 03 2017

A090656 Decimal expansion of 5 + sqrt(35).

Original entry on oeis.org

1, 0, 9, 1, 6, 0, 7, 9, 7, 8, 3, 0, 9, 9, 6, 1, 6, 0, 4, 2, 5, 6, 7, 3, 2, 8, 2, 9, 1, 5, 6, 1, 6, 1, 7, 0, 4, 8, 4, 1, 5, 5, 0, 1, 2, 3, 0, 7, 9, 4, 3, 4, 0, 3, 2, 2, 8, 7, 9, 7, 1, 9, 6, 6, 9, 1, 4, 2, 8, 2, 2, 4, 5, 9, 1, 0, 5, 6, 5, 3, 0, 3, 6, 7, 6, 5, 7, 5, 2, 5, 2, 7, 1, 8, 3, 1, 0, 9, 1, 7, 8, 0
Offset: 2

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n+n/(n+n/(n+n/(n+....))) for n = 10. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			10.9160797830996160...
		

Crossrefs

Equals A010490 plus 5. - R. J. Mathar, Sep 08 2008
Cf. A161321.
Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9). - Stanislav Sykora, Jan 23 2014

Programs

A132429 Period 4: repeat [3, 1, -1, -3].

Original entry on oeis.org

3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1, -1, -3, 3, 1
Offset: 0

Views

Author

Paul Curtz, Nov 13 2007

Keywords

Comments

Nonsimple continued fraction expansion of (7 + 3*sqrt(5))/2 = 6.85410196624... = 1 + A090550. - R. J. Mathar, Mar 08 2012
Pisano period lengths: 1, 1, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ... . - R. J. Mathar, Aug 10 2012

Crossrefs

Cf. A084101 (1, 3, 3, 1), A090550.

Programs

Formula

G.f.: (3 + 4*x + 3*x^2)/((1+x)*(1+x^2)). - Jaume Oliver Lafont, Aug 30 2009
a(n) = (-1)^n + 2(-1)^((2n + (-1)^n - 1)/4). - Brad Clardy, Mar 10 2013
a(n) = 3 - 2*(n mod 4). - Joerg Arndt, Mar 10 2013
a(n) = (-1)^n + 2(-1)^floor(n/2). - Wesley Ivan Hurt, Apr 17 2014
From Wesley Ivan Hurt, Jul 10 2016: (Start)
a(n) + a(n-1) + a(n-2) + a(n-3) = 0 for n>2, a(n) = a(n-4) for n>3.
a(n) = 2*cos(n*Pi/2) + cos(n*Pi) + 2*sin(n*Pi/2). (End)
Showing 1-10 of 18 results. Next