cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A090388 Decimal expansion of 1 + sqrt(3).

Original entry on oeis.org

2, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

1 + sqrt(3) is the length of the minimal Steiner network that connects the four vertices of a unit square. - Lekraj Beedassy, May 02 2008
This is the case n = 12 in the identity (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)) = 1 + 2*cos(2*Pi/n). - Bruno Berselli, Dec 14 2012
Equals n + n/(n + n/(n + n/(n + ...))) for n = 2. - Stanislav Sykora, Jan 23 2014
A non-optimal solution to the problem of finding the length of shortest fence that protects privacy of a square garden [Kawohl]. Cf. A256965. - N. J. A. Sloane, Apr 14 2015
Perimeter of a 30-60-90 triangle with longest leg equal to 1. - Wesley Ivan Hurt, Apr 09 2016
Length of the second shortest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020
Surface area of a square pyramid (Johnson solid J_1) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			2.7320508075688772...
		

Crossrefs

Cf. n + n/(n + n/(n + ...)): A090458 (n = 3), A090488 (n = 4), A090550 (n = 5), A092294 (n = 6), A092290 (n = 7), A090654 (n = 8), A090655 (n = 9), A090656 (n = 10). - Stanislav Sykora, Jan 23 2014
Cf., also A256965.

Programs

Formula

Equals 1 + A002194. - R. J. Mathar, Oct 16 2015
Equals A019973 -1 . - R. J. Mathar, May 25 2023

Extensions

Better definition from Rick L. Shepherd, Jul 02 2004

A090488 Decimal expansion of 2 + 2*sqrt(2).

Original entry on oeis.org

4, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Side length of smallest square containing five circles of radius 1. - Charles R Greathouse IV, Apr 05 2011
Equals n + n/(n +n/(n +n/(n +....))) for n = 4. See also A090388. - Stanislav Sykora, Jan 23 2014
Also the area of a regular octagon with unit edge length. - Stanislav Sykora, Apr 12 2015
The positive solution to x^2 - 4*x - 4 = 0. The negative solution is -1 * A163960 = -0.82842... . - Michal Paulovic, Dec 12 2023

Examples

			4.828427124746190097603377448419396157139343750...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Cf. Areas of other regular polygons: A120011, A102771, A104956, A178817, A256853, A178816, A256854, A178809.

Programs

Formula

Equals 1 + A086178 = 2*A014176. - R. J. Mathar, Sep 03 2007
From Michal Paulovic, Dec 12 2023: (Start)
Equals A010466 + 2.
Equals A156035 - 1.
Equals A157258 - 5.
Equals A163960 + 4.
Equals A365823 - 2.
Equals [4; 1, 4, ...] (periodic continued fraction expansion).
Equals sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * ...)))). (End)

Extensions

Better definition from Rick L. Shepherd, Jul 02 2004

A090550 Decimal expansion of solution to n/x = x - n for n = 5.

Original entry on oeis.org

5, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2, 1, 6, 1, 2, 5, 6, 8, 1, 7, 3, 4, 1, 2, 4
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x - n with n = 1 gives the Golden Ratio = 1.6180339887...
Equals n + n/(n + n/(n + n/(n + ....))) for n = 5. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			5.85410196624968454...
		

Crossrefs

Cf. n + n/(n + n/(n + ...)): A090388 (n = 2), A090458 (n = 3), A090488 (n = 4), A092294 (n = 6), A092290 (n = 7), A090654 (n = 8), A090655 (n = 9), A090656 (n = 10). - Stanislav Sykora, Jan 23 2014

Programs

  • Mathematica
    RealDigits[(5 + 3 Sqrt[5])/2, 10, 120][[1]] (* Harvey P. Dale, Nov 27 2013 *)
  • PARI
    (5 + 3*sqrt(5))/2 \\ G. C. Greubel, Jul 03 2017

Formula

n/x = x - n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 5: x = (5 + sqrt(45))/2 = 5.85410196624968454...
Equals (5 + 3*sqrt(5))/2 = 1 + 3*phi = sqrt(5)*(phi)^2, where phi is the golden ratio. - G. C. Greubel, Jul 03 2017
Equals 2*phi^3 - phi^2. - Michel Marcus, Apr 20 2020
Minimal polynomial is x^2 - 5x - 5 (this number is an algebraic integer). - Alonso del Arte, Apr 20 2020(n).
Equals lim_{n->oo} A057088(n+1)/A057088(n) = 1 + 3*phi. - Wolfdieter Lang, Nov 16 2023

A090654 Decimal expansion of 4 + 2*sqrt(6).

Original entry on oeis.org

8, 8, 9, 8, 9, 7, 9, 4, 8, 5, 5, 6, 6, 3, 5, 6, 1, 9, 6, 3, 9, 4, 5, 6, 8, 1, 4, 9, 4, 1, 1, 7, 8, 2, 7, 8, 3, 9, 3, 1, 8, 9, 4, 9, 6, 1, 3, 1, 3, 3, 4, 0, 2, 5, 6, 8, 6, 5, 3, 8, 5, 1, 3, 4, 5, 0, 1, 9, 2, 0, 7, 5, 4, 9, 1, 4, 6, 3, 0, 0, 5, 3, 0, 7, 9, 7, 1, 8, 8, 6, 6, 2, 0, 9, 2, 8, 0, 4, 6, 9, 6
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n +n/(n +n/(n +n/(n +....))) for n = 8. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			8.898979485566356196394568149...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Essentially the same as A010480.

Programs

  • Mathematica
    RealDigits[4 + 2*Sqrt[6], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    4 + 2*sqrt(6) \\ G. C. Greubel, Jul 03 2017

A092290 Decimal expansion of solution to n/x = x-n for n = 7.

Original entry on oeis.org

7, 8, 8, 7, 4, 8, 2, 1, 9, 3, 6, 9, 6, 0, 6, 1, 0, 3, 0, 2, 0, 3, 1, 9, 4, 1, 5, 3, 7, 0, 8, 1, 5, 4, 7, 8, 0, 4, 3, 7, 9, 3, 8, 4, 1, 3, 7, 7, 7, 2, 5, 1, 7, 9, 5, 4, 6, 3, 8, 4, 7, 8, 1, 4, 8, 9, 1, 3, 8, 2, 3, 2, 3, 1, 0, 9, 6, 5, 3, 1, 4, 0, 8, 3, 7, 8, 4, 6, 5, 7, 8, 5, 3, 4, 3, 5, 2, 8, 7, 7, 9
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
Equals n +n/(n +n/(n +n/(n +....))) for n = 7. See also A090388. - Stanislav Sykora, Jan 23 2014

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

Formula

n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 7: x = (7 + sqrt(77))/2 = 7.88748219369606...

A092294 Decimal expansion of 3 + sqrt(15).

Original entry on oeis.org

6, 8, 7, 2, 9, 8, 3, 3, 4, 6, 2, 0, 7, 4, 1, 6, 8, 8, 5, 1, 7, 9, 2, 6, 5, 3, 9, 9, 7, 8, 2, 3, 9, 9, 6, 1, 0, 8, 3, 2, 9, 2, 1, 7, 0, 5, 2, 9, 1, 5, 9, 0, 8, 2, 6, 5, 8, 7, 5, 7, 3, 7, 6, 6, 1, 1, 3, 4, 8, 3, 0, 9, 1, 9, 3, 6, 9, 7, 9, 0, 3, 3, 5, 1, 9, 2, 8, 7, 3, 7, 6, 8, 5, 8, 6, 7, 3, 5, 1, 7, 9
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n +n/(n +n/(n +n/(n +....))) for n = 6. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			6.87298334620741688...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

Formula

Equals A010472 plus 3. - R. J. Mathar, Sep 08 2008
Equals 1/A176016 + 6. - Hugo Pfoertner, Mar 19 2024

A090655 Decimal expansion of solution to n/x = x-n for n = 9.

Original entry on oeis.org

9, 9, 0, 8, 3, 2, 6, 9, 1, 3, 1, 9, 5, 9, 8, 3, 9, 3, 9, 6, 7, 8, 8, 3, 1, 9, 0, 1, 2, 0, 5, 7, 4, 3, 9, 1, 9, 3, 7, 6, 9, 4, 4, 8, 6, 0, 7, 6, 7, 8, 6, 9, 3, 1, 9, 0, 6, 5, 6, 7, 9, 5, 8, 4, 3, 4, 0, 7, 5, 0, 4, 2, 2, 4, 3, 9, 5, 1, 5, 6, 6, 7, 8, 0, 6, 9, 2, 8, 6, 2, 3, 0, 2, 7, 7, 3, 6, 0, 7, 6, 5
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
Equals n +n/(n +n/(n +n/(n +....))) for n = 9. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			9.90832691319598...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

  • Mathematica
    RealDigits[(3/2)*(3+Sqrt[13]), 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    (3/2)*(3 + sqrt(13)) \\ G. C. Greubel, Jul 03 2017

Formula

n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 9: x = (9 + sqrt(117))/2 = 9.90832691319598...
Equals (3/2)*(3 + sqrt(13)). - G. C. Greubel, Jul 03 2017

A090656 Decimal expansion of 5 + sqrt(35).

Original entry on oeis.org

1, 0, 9, 1, 6, 0, 7, 9, 7, 8, 3, 0, 9, 9, 6, 1, 6, 0, 4, 2, 5, 6, 7, 3, 2, 8, 2, 9, 1, 5, 6, 1, 6, 1, 7, 0, 4, 8, 4, 1, 5, 5, 0, 1, 2, 3, 0, 7, 9, 4, 3, 4, 0, 3, 2, 2, 8, 7, 9, 7, 1, 9, 6, 6, 9, 1, 4, 2, 8, 2, 2, 4, 5, 9, 1, 0, 5, 6, 5, 3, 0, 3, 6, 7, 6, 5, 7, 5, 2, 5, 2, 7, 1, 8, 3, 1, 0, 9, 1, 7, 8, 0
Offset: 2

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n+n/(n+n/(n+n/(n+....))) for n = 10. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			10.9160797830996160...
		

Crossrefs

Equals A010490 plus 5. - R. J. Mathar, Sep 08 2008
Cf. A161321.
Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9). - Stanislav Sykora, Jan 23 2014

Programs

A222134 Decimal expansion of sqrt(5 + sqrt(5 + sqrt(5 + sqrt(5 + ... )))).

Original entry on oeis.org

2, 7, 9, 1, 2, 8, 7, 8, 4, 7, 4, 7, 7, 9, 2, 0, 0, 0, 3, 2, 9, 4, 0, 2, 3, 5, 9, 6, 8, 6, 4, 0, 0, 4, 2, 4, 4, 4, 9, 2, 2, 2, 8, 2, 8, 8, 3, 8, 3, 9, 8, 5, 9, 5, 1, 3, 0, 3, 6, 2, 1, 0, 6, 1, 9, 5, 3, 4, 3, 4, 2, 1, 2, 7, 7, 3, 8, 8, 5, 4, 4, 3, 3, 0, 2, 1, 8, 0, 7, 7, 9, 7, 4, 6, 7, 2, 2, 5, 1, 6, 3
Offset: 1

Views

Author

Jaroslav Krizek, Feb 08 2013

Keywords

Comments

c^n = A015440(n) + A015440(n-1) * A222135, where c = (1 + sqrt(21))/2 and A222135 = (-1 + sqrt(21))/2. - Gary W. Adamson, Nov 27 2023

Examples

			2.791287847477920003294023596864...
		

Crossrefs

Programs

Formula

Equals (sqrt(21) + 1)/2 = A090458 - 1 = A107905 - 2 = A222135 + 1.
sqrt(5 + sqrt(5 + sqrt(5 + sqrt(5 + ... )))) - 1 = sqrt(5 - sqrt(5 - sqrt(5 - sqrt(5 - ... )))) = A222135.
Minimal polynomial: x^2 - x - 5. - Stefano Spezia, Jul 02 2025

A107905 Decimal expansion of (5+sqrt(21))/2.

Original entry on oeis.org

4, 7, 9, 1, 2, 8, 7, 8, 4, 7, 4, 7, 7, 9, 2, 0, 0, 0, 3, 2, 9, 4, 0, 2, 3, 5, 9, 6, 8, 6, 4, 0, 0, 4, 2, 4, 4, 4, 9, 2, 2, 2, 8, 2, 8, 8, 3, 8, 3, 9, 8, 5, 9, 5, 1, 3, 0, 3, 6, 2, 1, 0, 6, 1, 9, 5, 3, 4, 3, 4, 2, 1, 2, 7, 7, 3, 8, 8, 5, 4, 4, 3, 3, 0, 2, 1, 8, 0, 7, 7, 9, 7, 4, 6, 7, 2, 2, 5, 1, 6
Offset: 1

Views

Author

Jonathan Vos Post, Jun 22 2007

Keywords

Examples

			4.7912878474779200032940235968640042444922282883839859513036...
The zeros at 15, 16 and 17 digits after the decimal point allow for a good rational approximation. The continued fraction is [4,1,3,1,3,1,3,...] = 4 + 1/(1+ 1/(3+ 1/(1+ 1/(3+ 1/(1+ 1/(3+ 1(/1+ ...
		

References

  • D. Mumford et al., Indra's Pearls, Cambridge 2002; see p. 317. [From N. J. A. Sloane, Nov 22 2009]

Crossrefs

Equals 1+A090458. - R. J. Mathar, Aug 24 2008

Programs

Formula

(4.791287...)^n = A090458 * A004254(n) + A004253(n). - Gary W. Adamson, Sep 11 2023
Equals lim_{n->oo} S(n, 5)/S(n-1, 5), with the S-Chebyshev polynomial (see A049310) S(n, 5) = A004254(n+1). - Wolfdieter Lang, Nov 15 2023
c^k = A004254(k)*c - A004254(k-1) for k >= 1, where c is the present constant. - Andrea Pinos, Jul 19 2024
Minimal polynomial: x^2 - 5*x + 1. - Stefano Spezia, Jul 02 2025
Showing 1-10 of 13 results. Next