cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A367453 Decimal expansion of (-1 + sqrt(21))/10 = 1/A222134.

Original entry on oeis.org

3, 5, 8, 2, 5, 7, 5, 6, 9, 4, 9, 5, 5, 8, 4, 0, 0, 0, 6, 5, 8, 8, 0, 4, 7, 1, 9, 3, 7, 2, 8, 0, 0, 8, 4, 8, 8, 9, 8, 4, 4, 5, 6, 5, 7, 6, 7, 6, 7, 9, 7, 1, 9, 0, 2, 6, 0, 7, 2, 4, 2, 1, 2, 3, 9, 0, 6, 8, 6, 8, 4, 2, 5, 5, 4, 7, 7, 7, 0, 8, 8, 6, 6, 0, 4, 3, 6, 1, 5, 5, 9, 4, 9, 3, 4, 4, 5, 0, 3
Offset: 0

Views

Author

Wolfdieter Lang, Nov 20 2023

Keywords

Comments

Positive root of the minimal polynomial x^2 + 1/5 - 1/5. The negative root is -(1/5)*A222134 = -0.558257569...
c^n = A(-n) + B(-n)*phi21, and A(n) = S21(n+1) - S21(n) = A365824(n), with phi21 = A222134, and B(n) = S21(n) = A015440(n-1), where S21(n) = sqrt(-5)^(n-1)*S(n-1, 1/sqrt(-5)), with the Chebyshev polynomials {S(n, x)} (see A049310).
The formula for negative indices of S is S(-1, 0) = 0 and S(-n, x) = -S(n-2, x) for n >= 2.

Examples

			c = 0.3582575694955840006588047193728008488984456...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(Sqrt[21]-1)/10,10,100]] (* Paolo Xausa, Nov 21 2023 *)
  • PARI
    \\ Works in v2.13 and higher; n = 100 decimal places
    my(n=100); digits(floor(10^(n-1)*(quadgen(84)-1))) \\ Michal Paulovic, Nov 20 2023

Formula

c = 1/phi21 = (1/5)*(1 - phi21), with phi21 = (1 + sqrt(21))/2 = A222134, hence an algebraic number of the real quadratic number field Q(sqrt(21)) but not an algebraic integer like phi24.
Equals (A010477-1)/10. - R. J. Mathar, Nov 21 2023
Equals 2*A222135/10. - Hugo Pfoertner, Mar 21 2024

A015440 a(n) = a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 6, 11, 41, 96, 301, 781, 2286, 6191, 17621, 48576, 136681, 379561, 1062966, 2960771, 8275601, 23079456, 64457461, 179854741, 502142046, 1401415751, 3912125981, 10919204736, 30479834641, 85075858321, 237475031526, 662854323131, 1850229480761, 5164501096416
Offset: 0

Views

Author

Keywords

Comments

Original name: Generalized Fibonacci numbers.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 6*a(n-2) equals the number of 6-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
Pisano period lengths: 1, 3, 6, 6, 1, 6, 21, 12, 18, 3, 40, 6, 56, 21, 6, 24, 16, 18, 360, 6, .... - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Jan 02 2024: (Start)
This sequence {a(n-1)}, with a(-1) = 0, appears in the formula for powers of phi21 := (1 + sqrt(21))/2 = A222134 = 2.791287..., together with A(n) = A365824(n), as phi21^n = A(n) + a(n-1)*phi21(n), for n >= 0.
Limit_{n->oo} a(n)/a(n-1) = phi21. (End)

Crossrefs

Programs

Formula

a(n) = a(n-1) + 5*a(n-2).
a(n) = (( (1+sqrt(21))/2 )^(n+1) - ( (1-sqrt(21))/2 )^(n+1))/sqrt(21).
a(n) = Sum_{k=0..ceiling(n/2)} 5^k*binomial(n-k, k). - Benoit Cloitre, Mar 06 2004
G.f.: 1/(1 - x - 5x^2). - R. J. Mathar, Sep 03 2008
a(n) = Sum_{k=0..n} A109466(n,k)*(-5)^(n-k). - Philippe Deléham, Oct 26 2008
From Jeffrey R. Goodwin, May 28 2011: (Start)
A special case of a more general class of Lucas sequences given by
U(n) = U(n-1) + (4^(m-1)-1)/3 U(n-2).
U(n) = (( (1+sqrt((4^(m)-1)/3))/2 )^(n+1) - ( (1-sqrt((4^(m)-1)/3))/2 )^(n+1))/sqrt((4^(m)-1)/3). Fix m = 2 to get the formula for the Fibonacci sequence, fix m = 3 to get the formula for a(n). (End)
G.f.: G(0)/(2-x), where G(k)= 1 + 1/(1 - x*(21*k-1)/(x*(21*k+20) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: Q(0)/x -1/x, where Q(k) = 1 + 5*x^2 + (k+2)*x - x*(k+1 + 5*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
a(n) = (Sum_{k=1..n+1, k odd} binomial(n+1,k)*21^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014
With an initial 0 prepended, the sequence [0, 1, 1, 6, 11, 41, 96, ...] satisfies the congruences a(n*p^k) == (3|p)*(7|p)*a(n*p^(k-1)) (mod p^k) for positive integers k and n and all primes p, where (n|p) denotes the Legendre symbol. See Young, Theorem 1, Corollary 1(i). - Peter Bala, Dec 28 2022
a(n) = sqrt(-5)^(n-1)*S(n-1,1/sqrt(-5)), for n >= 0, with the Chebyshev polynomial S(n, x) (see A049310). - Wolfdieter Lang, Nov 17 2023
From Peter Bala, Jun 27 2025: (Start)
The following products telescope:
Product_{k >= 0} (1 + 5^k/a(2*k+1)) = 1 + sqrt(21).
Product_{k >= 1} (1 - 5^k/a(2*k+1)) = 1/22 * (1 + sqrt(21)).
Product_{k >= 0} (1 + (-5)^k/a(2*k+1)) = (1/21) * (21 + sqrt(21)).
Product_{k >= 1} (1 - (-5)^k/a(2*k+1)) = (1/22) * (21 + sqrt(21)). (End)
E.g.f.: exp(x/2)*(sqrt(21)*cosh(sqrt(21)*x/2) + sinh(sqrt(21)*x/2))/sqrt(21). - Stefano Spezia, Jul 04 2025

A010477 Decimal expansion of square root of 21.

Original entry on oeis.org

4, 5, 8, 2, 5, 7, 5, 6, 9, 4, 9, 5, 5, 8, 4, 0, 0, 0, 6, 5, 8, 8, 0, 4, 7, 1, 9, 3, 7, 2, 8, 0, 0, 8, 4, 8, 8, 9, 8, 4, 4, 5, 6, 5, 7, 6, 7, 6, 7, 9, 7, 1, 9, 0, 2, 6, 0, 7, 2, 4, 2, 1, 2, 3, 9, 0, 6, 8, 6, 8, 4, 2, 5, 5, 4, 7, 7, 7, 0, 8, 8, 6, 6, 0, 4, 3, 6, 1, 5, 5, 9, 4, 9, 3, 4, 4, 5, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 4 followed by {1, 1, 2, 1, 1, 8} repeated. - Harry J. Smith, Jun 03 2009
The fundamntal algebraic (integer) number in the field Q(sqrt(21)) is (1 + sqrt(21))/2 = A222134. - Wolfdieter Lang, Nov 21 2023

Examples

			4.582575694955840006588047193728008488984456576767971902607242123906868...
		

Crossrefs

Cf. A010125 (continued fraction), A248249 (Egyptian fraction).
Cf. A020778 (reciprocal), A222134.

Programs

  • Mathematica
    RealDigits[N[Sqrt[21],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 22 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(21); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010477.txt", n, " ", d));  \\ Harry J. Smith, Jun 03 2009

A235162 Decimal expansion of (sqrt(33) + 1) / 2.

Original entry on oeis.org

3, 3, 7, 2, 2, 8, 1, 3, 2, 3, 2, 6, 9, 0, 1, 4, 3, 2, 9, 9, 2, 5, 3, 0, 5, 7, 3, 4, 1, 0, 9, 4, 6, 4, 6, 5, 9, 1, 1, 0, 1, 3, 2, 2, 2, 8, 9, 9, 1, 3, 9, 6, 1, 8, 3, 8, 4, 9, 9, 3, 8, 7, 3, 5, 2, 8, 2, 9, 5, 0, 3, 6, 0, 7, 2, 8, 7, 0, 2, 3, 1, 3, 5, 1, 3, 5, 6, 2, 6, 8, 2, 7, 9, 8, 3, 9, 4
Offset: 1

Views

Author

Jaroslav Krizek, Feb 06 2014

Keywords

Comments

Solution of y^2 - y - 8 = 0.
Decimal expansion of sqrt(8 + sqrt(8 + sqrt(8 + sqrt(8 + ... )))).
The sequence with a(1) = 2 is decimal expansion of sqrt(8 - sqrt(8 - sqrt(8 - sqrt(8 - ... )))).
A basis for the integers of the real quadratic number field K(sqrt(33)) is
<1, omega(33)>, where omega(33) = (1 + sqrt(33))/2. - Wolfdieter Lang, Feb 11 2020

Examples

			3.37228132326901432992530573410946465911013222899139618384993873528...
		

Crossrefs

Programs

  • MATLAB
    val = vpa((sqrt(sym(33))+1)/2,10001); list = char(val)-'0'; list = list([1,3:end-1]); % Christopher M. Conrey, Jan 26 2022
  • Mathematica
    RealDigits[(1 + Sqrt[33])/2, 10, 130]

A365824 a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.

Original entry on oeis.org

1, 0, 5, 5, 30, 55, 205, 480, 1505, 3905, 11430, 30955, 88105, 242880, 683405, 1897805, 5314830, 14803855, 41378005, 115397280, 322287305, 899273705, 2510710230, 7007078755, 19560629905, 54596023680, 152399173205, 425379291605, 1187375157630, 3314271615655
Offset: 0

Views

Author

Wolfdieter Lang, Nov 20 2023

Keywords

Comments

This sequence {a(n)} appears in the formula for powers of phi21 := (1 + sqrt(21))/2 = A222134 = 2.791287..., together with b(n) = A015440(n-1), with A015440(-1) = 0, as phi21^n = a(n) + b(n)*phi21(n), for n >= 0. But the later given formulas in terms of scaled Chebyshev polynomials, called here {S21(n)}, are valid also for negative n values, i.e., for nonnegative powers of 1/phi21 = (-1 + sqrt(21))/10 = 0.35825756949... = A367453.
Limit_{n->oo} a(n)/a(n-1) = (1 + sqrt(21))/2 = A222134 = 2.791287...

Examples

			phi21^2 = a(2) + b(2)*phi(n) = 5 + phi21 = 7.79128784..., a real algebraic integer in Q(sqrt(21)).
(1/phi21)^2 = a(-2) + b(-2)*phi21 = (1/25)*(6 - phi21) = 0.12834848..., a real algebraic number in Q(sqrt(21)).
		

Crossrefs

Cf. A010477 (sqrt(21)), A015440, A049310, A222134, A367453.

Programs

  • Mathematica
    LinearRecurrence[{1,5},{1,0},50] (* Paolo Xausa, Nov 21 2023 *)
  • PARI
    a(n) = abs([1, 3; 1, -2]^(n-2)*[5; 5])[2, 1] \\ Thomas Scheuerle, Nov 20 2023

Formula

a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.
G.f.: (1 - x)/(1 - x - 5*x^2).
a(n) = S21(n+1) - S21(n), for n >= 0, where S21(n) = sqrt(-5)^(n-1)*S(n-1, 1/sqrt(-5)), with the Chebyshev polynomials {S(n, x)} (see A049310).
The above mentioned sequence {b(n)} has terms b(n) = A015440(n-1) = S21(n), for n >= 0, with the same recurrence as {a(n)} but with b(0) = 0 and b(1) = 1, and g.f. x/(1 - x - 5*x^2).
The formula for negative indices of S is: S(-1, 0) = 0 and S(-n, x) = -S(n-2, x) for n >= 2.

A222135 Decimal expansion of sqrt(5 - sqrt(5 - sqrt(5 - sqrt(5 - ... )))).

Original entry on oeis.org

1, 7, 9, 1, 2, 8, 7, 8, 4, 7, 4, 7, 7, 9, 2, 0, 0, 0, 3, 2, 9, 4, 0, 2, 3, 5, 9, 6, 8, 6, 4, 0, 0, 4, 2, 4, 4, 4, 9, 2, 2, 2, 8, 2, 8, 8, 3, 8, 3, 9, 8, 5, 9, 5, 1, 3, 0, 3, 6, 2, 1, 0, 6, 1, 9, 5, 3, 4, 3, 4, 2, 1, 2, 7, 7, 3, 8, 8, 5, 4, 4, 3, 3, 0, 2, 1, 8, 0, 7, 7, 9, 7, 4, 6, 7, 2, 2, 5, 1, 6, 3
Offset: 1

Views

Author

Jaroslav Krizek, Feb 08 2013

Keywords

Comments

Sequence with a(1) = 2 is decimal expansion of sqrt(5 + sqrt(5 + sqrt(5 + sqrt(5 + ... )))) - A222134.

Examples

			1.791287847477920003294023596864...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[21] - 1)/2, 10, 130]

Formula

Closed form: (sqrt(21) - 1)/2 = A090458-2 = A107905-3 = A222134-1.
sqrt(5 - sqrt(5 - sqrt(5 - sqrt(5 - ... )))) + 1 = sqrt(5 + sqrt(5 + sqrt(5 + sqrt(5 + ... )))). See A222134.
Minimal polynomial: x^2 + x - 5. - Stefano Spezia, Jul 02 2025

A178134 Sum_{m=0..(n-1)/2} A176263(n-m-1, m).

Original entry on oeis.org

0, 1, 1, 2, -3, -2, -32, -81, -311, -810, -2515, -6864, -19944, -55043, -156023, -433522, -1217427, -3391226, -9488456, -26462205, -73933535, -206293134, -576040339, -1607642688, -4488069168, -12526662167, -34967630447
Offset: 0

Views

Author

Roger L. Bagula, May 20 2010

Keywords

Comments

The limiting ratio is (alternating) A222134, 5 times a root of the polynomial 5x^2+x-1 in the denominator of the g.f.

Crossrefs

Programs

  • Maple
    A178134 := proc(n)
        add( A176263(n-m-1,m), m=0..(n-1)/2) ;
    end proc: # R. J. Mathar, May 15 2016
  • Mathematica
    Clear[a, f, a0, t]
    f[0, a_] := 0; f[1, a_] := 1;
    f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
    t[n_, m_, a_] := f[m + 1, a] + f[n + 1 - m, a] - f[n + 1, a];
    a = 5;
    a0[n_] := Sum[t[n - m - 1, m, a], {m, 0, Floor[(n - 1)/2]}];
    Table[a0[n], {n, 0, 30}]
  • PARI
    a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; 25,5,-25,-4,-6,-2,7,1]^n*[0;1;1;2;-3;-2;-32;-81])[1,1] \\ Charles R Greathouse IV, May 15 2016

Formula

G.f. -x*(1-6*x^2-10*x^3-5*x^4+5*x^5) / ( (x-1)*(1+x)*(5*x^2+x-1)*(5*x^4+x^2-1) ). - R. J. Mathar, Nov 05 2012

Extensions

New name from R. J. Mathar, May 15 2016

A320029 Decimal expansion of sqrt(9 + sqrt(9 + sqrt(9 + sqrt(9 + ...)))) = (sqrt(37) + 1)/2.

Original entry on oeis.org

3, 5, 4, 1, 3, 8, 1, 2, 6, 5, 1, 4, 9, 1, 0, 9, 8, 4, 4, 4, 9, 9, 8, 4, 2, 1, 2, 2, 6, 0, 1, 0, 3, 3, 5, 3, 1, 0, 4, 2, 4, 8, 5, 0, 4, 7, 3, 9, 3, 2, 0, 5, 5, 9, 3, 2, 0, 9, 5, 7, 6, 5, 2, 3, 2, 4, 3, 1, 6, 6, 3, 6, 2, 6, 5, 9, 4, 5, 5, 1, 1, 9, 9, 0, 1, 5, 3, 3, 2, 1, 3, 9, 7, 8, 9, 2, 4, 3, 3, 1, 7, 1, 5, 4, 6
Offset: 1

Views

Author

Robert G. Wilson v, Oct 03 2018

Keywords

Comments

For x >= 0, sqrt(x + sqrt(x + sqrt(x + sqrt(x + ...)))) = (sqrt(4*x+1) + 1)/2. This is an integer for each x such that 2*x is a term in A000217.

Examples

			3.541381265149109844499842122601033531042485047393205593209576523243166362659...
		

Crossrefs

Programs

  • Maple
    evalf((sqrt(37)+1)/2,120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[ Fold[ Sqrt[#1 + #2] &, 0, Table[9, {135}]], 10, 111][[1]] (* or *)
    RealDigits[(Sqrt[37] + 1)/2, 10, 111][[1]]
  • PARI
    (sqrt(37)+1)/2 \\ Altug Alkan, Oct 03 2018

Formula

Minimal polynomial: x^2 - x - 9. - Stefano Spezia, Jul 02 2025
Showing 1-8 of 8 results.