A176263 Triangle T(n,k) = A015440(k) - A015440(n) + A015440(n-k), read by rows.
1, 1, 1, 1, -4, 1, 1, -4, -4, 1, 1, -29, -29, -29, 1, 1, -54, -79, -79, -54, 1, 1, -204, -254, -279, -254, -204, 1, 1, -479, -679, -729, -729, -679, -479, 1, 1, -1504, -1979, -2179, -2204, -2179, -1979, -1504, 1, 1, -3904, -5404, -5879, -6054, -6054, -5879, -5404, -3904, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -4, 1; 1, -4, -4, 1; 1, -29, -29, -29, 1; 1, -54, -79, -79, -54, 1; 1, -204, -254, -279, -254, -204, 1; 1, -479, -679, -729, -729, -679, -479, 1; 1, -1504, -1979, -2179, -2204, -2179, -1979, -1504, 1; 1, -3904, -5404, -5879, -6054, -6054, -5879, -5404, -3904, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
A015440:= func< n | &+[5^j*Binomial(n-j,j): j in [0..Floor(n/2)]] >; [A015440(k) - A015440(n) + A015440(n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 24 2019
-
Maple
A176263 := proc(n,k) A015440(k)-A015440(n)+A015440(n-k) ; end proc; # R. J. Mathar, May 03 2013
-
Mathematica
(* Set of sequences q=0..10. This sequence is q=5. *) f[n_, q_]:= f[n, q] = If[n<2, n, f[n-1, q] + q*f[n-2, q]]; T[n_, k_, q_]:= f[k+1, q] + f[n-k+1, q] - f[n+1, q]; Table[Flatten[Table[T[n, k, q], {n,0,10}, {k,0,n}]], {q,0,10}] (* Second program *) A015440[n_]:= Sum[5^j*Binomial[n-j, j], {j,0,(n+1)/2}]; T[n_, k_]:= T[n, k]= A015440[k] +A015440[n-k] -A015440[n]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 24 2019 *)
-
PARI
A015440(n) = sum(j=0,(n+1)\2, 5^j*binomial(n-j,j)); T(n,k) = A015440(k) - A015440(n) + A015440(n-k); \\ G. C. Greubel, Nov 24 2019
-
Sage
def A015440(n): return sum(5^j*binomial(n-j,j) for j in (0..floor(n/2))) [[A015440(k) - A015440(n) + A015440(n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 24 2019
Comments