cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A248249 Egyptian fraction representation of sqrt(21) (A010477) using a greedy function.

Original entry on oeis.org

4, 2, 13, 177, 344766, 1649432522483, 3009384963228815398356405, 9085726642856091334926418336934724393317743509110, 200625769243543756748406312378876010708020812606355642597458369416042779347013395136132184521789202
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 21]]

A176014 Decimal expansion of (3+sqrt(21))/6.

Original entry on oeis.org

1, 2, 6, 3, 7, 6, 2, 6, 1, 5, 8, 2, 5, 9, 7, 3, 3, 3, 4, 4, 3, 1, 3, 4, 1, 1, 9, 8, 9, 5, 4, 6, 6, 8, 0, 8, 1, 4, 9, 7, 4, 0, 9, 4, 2, 9, 4, 6, 1, 3, 2, 8, 6, 5, 0, 4, 3, 4, 5, 4, 0, 3, 5, 3, 9, 8, 4, 4, 7, 8, 0, 7, 0, 9, 2, 4, 6, 2, 8, 4, 8, 1, 1, 0, 0, 7, 2, 6, 9, 2, 6, 5, 8, 2, 2, 4, 0, 8, 3, 8, 7, 7, 9, 6, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(21))/6 is A010684.
Also greatest eigenvalue of the 6 X 6 matrix [[3 0 0 3 0 0][0 0 0 0 1 0][0 3 0 0 3 0][0 0 0 0 1 0][0 0 3 0 0 3][0 0 0 0 1 0]]/3. It is conjectured that this is lim_{k->infinity} A005186(k+1)/A005186(k), i.e., the asymptotic growth rate of the number of numbers with the same total stopping time in the Collatz iteration. - Hugo Pfoertner, Sep 28 2020

Examples

			(3+sqrt(21))/6 = 1.26376261582597333443...
		

Crossrefs

Cf. A010477 (decimal expansion of sqrt(21)).
Cf. A010684 (repeat 1, 3), A136210, A136211.

Programs

  • Mathematica
    RealDigits[(3+Sqrt[21])/6,10,120][[1]] (* Harvey P. Dale, Jul 21 2023 *)
  • PARI
    vecmax(mateigen([1,0,0,1,0,0; 0,0,0,0,1/3,0; 0,1,0,0,1,0; 0,0,0,0,1/3,0; 0,0,1,0,0,1; 0,0,0,0,1/3,0],1)[1]) \\ Hugo Pfoertner, Sep 28 2020

A176441 Decimal expansion of sqrt(210).

Original entry on oeis.org

1, 4, 4, 9, 1, 3, 7, 6, 7, 4, 6, 1, 8, 9, 4, 3, 8, 5, 7, 3, 7, 1, 8, 6, 6, 4, 1, 5, 7, 1, 6, 9, 7, 7, 1, 7, 2, 3, 1, 4, 0, 1, 3, 2, 8, 7, 4, 7, 5, 8, 9, 7, 3, 0, 8, 8, 6, 9, 5, 9, 2, 4, 8, 0, 7, 1, 1, 8, 1, 4, 4, 3, 7, 2, 6, 5, 3, 6, 8, 0, 4, 2, 1, 7, 1, 2, 5, 6, 3, 1, 9, 2, 0, 0, 3, 6, 1, 7, 4, 9, 7, 7, 5, 3, 0
Offset: 2

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of sqrt(210) is A040195.

Examples

			sqrt(210) = 14.49137674618943857371...
		

Crossrefs

Cf. A010467 (decimal expansion of sqrt(10)), A010477 (decimal expansion of sqrt(21)), A176440 (decimal expansion of (14+sqrt(210))/4), A040195 (14 followed by (repeat 2, 28)).

Programs

  • Mathematica
    RealDigits[Sqrt[210],10,120][[1]]  (* Harvey P. Dale, Apr 21 2011 *)

A010125 Continued fraction for sqrt(21).

Original entry on oeis.org

4, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 8, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			4.582575694955840006588047193... = 4 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A041032/A041033 (convergents), A010477 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Sqrt[21],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{4},120,{8,1,1,2,1,1}] (* Harvey P. Dale, May 16 2020 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 14000); x=contfrac(sqrt(21)); for (n=0, 20000, write("b010125.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

a(n) = gcd(Fibonacci(n), Fibonacci(n-6)), n > 0. - Gary Detlefs, Dec 29 2010
G.f.: (4 + x + x^2 + 2*x^3 + x^4 + x^5 + 4*x^6)/(1 - x^6). - Stefano Spezia, Jul 26 2025

A171537 Decimal expansion of sqrt(3/7).

Original entry on oeis.org

6, 5, 4, 6, 5, 3, 6, 7, 0, 7, 0, 7, 9, 7, 7, 1, 4, 3, 7, 9, 8, 2, 9, 2, 4, 5, 6, 2, 4, 6, 8, 5, 8, 3, 5, 5, 5, 6, 9, 2, 0, 8, 0, 8, 2, 3, 9, 5, 4, 2, 4, 5, 5, 7, 5, 1, 5, 3, 2, 0, 3, 0, 3, 4, 1, 5, 2, 6, 6, 9, 1, 7, 9, 3, 5, 3, 9, 5, 8, 4, 0, 9, 4, 3, 4, 8, 0, 2, 2, 2, 7, 8, 4, 7, 7, 7, 8, 6, 1, 8, 1, 1, 0, 8, 5
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <2 3/2 ; -2 -1/2 | 7/2 -5/2>.

Examples

			sqrt(3/7) = 0.6546536707079771437982924562...
		

Programs

Formula

equals A002194/A010465 = 3/A010477.

A176400 Decimal expansion of sqrt(483).

Original entry on oeis.org

2, 1, 9, 7, 7, 2, 6, 0, 9, 7, 5, 8, 3, 5, 9, 1, 0, 5, 6, 7, 2, 0, 1, 6, 3, 5, 8, 6, 0, 8, 9, 5, 5, 5, 0, 9, 1, 6, 5, 1, 5, 9, 2, 5, 7, 7, 0, 1, 9, 9, 3, 1, 6, 5, 6, 1, 7, 9, 8, 0, 8, 7, 9, 8, 8, 1, 4, 1, 9, 4, 8, 6, 5, 0, 6, 2, 0, 8, 2, 1, 0, 8, 0, 7, 0, 6, 1, 1, 6, 7, 7, 4, 1, 6, 7, 7, 2, 4, 2, 5, 8, 3, 0, 5, 6
Offset: 2

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Continued fraction expansion of sqrt(483) is A040461.

Examples

			sqrt(483) = 21.97726097583591056720...
		

Crossrefs

Cf. A010477 (decimal expansion of sqrt(21)), A010479 (decimal expansion of sqrt(23)), A176399 (decimal expansion of (21+sqrt(483))/7), A040461.

Programs

  • Mathematica
    RealDigits[Sqrt[483],10,120][[1]] (* Harvey P. Dale, Oct 09 2015 *)

A041032 Numerators of continued fraction convergents to sqrt(21).

Original entry on oeis.org

4, 5, 9, 23, 32, 55, 472, 527, 999, 2525, 3524, 6049, 51916, 57965, 109881, 277727, 387608, 665335, 5710288, 6375623, 12085911, 30547445, 42633356, 73180801, 628079764, 701260565, 1329340329, 3359941223
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 110*a(n-6)-a(n-12). G.f.: -(x^11 -4*x^10 +5*x^9 -9*x^8 +23*x^7 -32*x^6 -55*x^5 -32*x^4 -23*x^3 -9*x^2 -5*x -4)/((x^4 -5*x^2 +1) *(x^8 +5*x^6 +24*x^4 +5*x^2 +1)). - Colin Barker, Jul 16 2012

A041033 Denominators of continued fraction convergents to sqrt(21).

Original entry on oeis.org

1, 1, 2, 5, 7, 12, 103, 115, 218, 551, 769, 1320, 11329, 12649, 23978, 60605, 84583, 145188, 1246087, 1391275, 2637362, 6665999, 9303361, 15969360, 137058241, 153027601, 290085842, 733199285, 1023285127
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[21],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011 *)
    Denominator[Convergents[Sqrt[21],30]] (* Harvey P. Dale, Apr 22 2013 *)
    CoefficientList[Series[- (x^4 - x^3 + 2 x^2 + x + 1) (x^6 - 6 x^3 - 1)/((x^4 - 5 x^2 + 1) (x^8 + 5 x^6 + 24 x^4 + 5 x^2 + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *)

Formula

a(n) = 110*a(n-6)-a(n-12). G.f.: -(x^4-x^3+2*x^2+x+1)*(x^6-6*x^3-1)/((x^4-5*x^2+1)*(x^8+5*x^6+24*x^4+5*x^2+1)). [Colin Barker, Jul 16 2012]

A365824 a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.

Original entry on oeis.org

1, 0, 5, 5, 30, 55, 205, 480, 1505, 3905, 11430, 30955, 88105, 242880, 683405, 1897805, 5314830, 14803855, 41378005, 115397280, 322287305, 899273705, 2510710230, 7007078755, 19560629905, 54596023680, 152399173205, 425379291605, 1187375157630, 3314271615655
Offset: 0

Views

Author

Wolfdieter Lang, Nov 20 2023

Keywords

Comments

This sequence {a(n)} appears in the formula for powers of phi21 := (1 + sqrt(21))/2 = A222134 = 2.791287..., together with b(n) = A015440(n-1), with A015440(-1) = 0, as phi21^n = a(n) + b(n)*phi21(n), for n >= 0. But the later given formulas in terms of scaled Chebyshev polynomials, called here {S21(n)}, are valid also for negative n values, i.e., for nonnegative powers of 1/phi21 = (-1 + sqrt(21))/10 = 0.35825756949... = A367453.
Limit_{n->oo} a(n)/a(n-1) = (1 + sqrt(21))/2 = A222134 = 2.791287...

Examples

			phi21^2 = a(2) + b(2)*phi(n) = 5 + phi21 = 7.79128784..., a real algebraic integer in Q(sqrt(21)).
(1/phi21)^2 = a(-2) + b(-2)*phi21 = (1/25)*(6 - phi21) = 0.12834848..., a real algebraic number in Q(sqrt(21)).
		

Crossrefs

Cf. A010477 (sqrt(21)), A015440, A049310, A222134, A367453.

Programs

  • Mathematica
    LinearRecurrence[{1,5},{1,0},50] (* Paolo Xausa, Nov 21 2023 *)
  • PARI
    a(n) = abs([1, 3; 1, -2]^(n-2)*[5; 5])[2, 1] \\ Thomas Scheuerle, Nov 20 2023

Formula

a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.
G.f.: (1 - x)/(1 - x - 5*x^2).
a(n) = S21(n+1) - S21(n), for n >= 0, where S21(n) = sqrt(-5)^(n-1)*S(n-1, 1/sqrt(-5)), with the Chebyshev polynomials {S(n, x)} (see A049310).
The above mentioned sequence {b(n)} has terms b(n) = A015440(n-1) = S21(n), for n >= 0, with the same recurrence as {a(n)} but with b(0) = 0 and b(1) = 1, and g.f. x/(1 - x - 5*x^2).
The formula for negative indices of S is: S(-1, 0) = 0 and S(-n, x) = -S(n-2, x) for n >= 2.

A017967 Powers of sqrt(21) rounded down.

Original entry on oeis.org

1, 4, 21, 96, 441, 2020, 9261, 42439, 194481, 891223, 4084101, 18715701, 85766121, 393029741, 1801088541, 8253624572, 37822859361, 173326116021, 794280046581, 3639848436450, 16679880978201, 76436817165460
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010477 (sqrt(21)).

Programs

Formula

a(n) = floor(sqrt(21^n)). - Vincenzo Librandi, Jun 24 2011
Showing 1-10 of 16 results. Next