cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A317026 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 8 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 8, 1, 16, 1, 24, 64, 1, 32, 192, 1, 40, 384, 512, 1, 48, 640, 2048, 1, 56, 960, 5120, 4096, 1, 64, 1344, 10240, 20480, 1, 72, 1792, 17920, 61440, 32768, 1, 80, 2304, 28672, 143360, 196608, 1, 88, 2880, 43008, 286720, 688128, 262144, 1, 96, 3520, 61440, 516096, 1835008, 1835008
Offset: 0

Views

Author

Zagros Lalo, Jul 19 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013615 ((1+8*x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A038279 ((8+x)^n).
The coefficients in the expansion of 1/(1-x-8*x^2) are given by the sequence generated by the row sums.
The row sums are Generalized Fibonacci numbers (see A015443).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.3722813232690143..., when n approaches infinity; see A235162 (Decimal expansion of (sqrt(33)+1)/2).

Examples

			Triangle begins:
  1;
  1;
  1, 8;
  1, 16;
  1, 24, 64;
  1, 32, 192;
  1, 40, 384, 512;
  1, 48, 640, 2048;
  1, 56, 960, 5120, 4096;
  1, 64, 1344, 10240, 20480;
  1, 72, 1792, 17920, 61440, 32768;
  1, 80, 2304, 28672, 143360, 196608;
  1, 88, 2880, 43008, 286720, 688128, 262144;
  1, 96, 3520, 61440, 516096, 1835008, 1835008;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, Pages 70, 98

Crossrefs

Row sums give A015443.

Programs

  • GAP
    Flat(List([0..13],n->List([0..Int(n/2)],k->8^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 19 2018
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 8 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
    Table[8^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten

Formula

T(n,k) = 8^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).

A236290 Decimal expansion of (sqrt(33) - 1) / 2.

Original entry on oeis.org

2, 3, 7, 2, 2, 8, 1, 3, 2, 3, 2, 6, 9, 0, 1, 4, 3, 2, 9, 9, 2, 5, 3, 0, 5, 7, 3, 4, 1, 0, 9, 4, 6, 4, 6, 5, 9, 1, 1, 0, 1, 3, 2, 2, 2, 8, 9, 9, 1, 3, 9, 6, 1, 8, 3, 8, 4, 9, 9, 3, 8, 7, 3, 5, 2, 8, 2, 9, 5, 0, 3, 6, 0, 7, 2, 8, 7, 0, 2, 3, 1, 3, 5, 1, 3, 5, 6, 2, 6, 8, 2, 7, 9, 8, 3, 9, 4
Offset: 1

Views

Author

Jaroslav Krizek, Feb 07 2014

Keywords

Comments

Decimal expansion of sqrt(8 - sqrt(8 - sqrt(8 - sqrt(8 - ... )))).
The sequence with a(1) = 3 is decimal expansion of sqrt(8 + sqrt(8 + sqrt(8 + sqrt(8 + ... )))).
A quadratic integer with minimal polynomial x^2 + x - 8. - Charles R Greathouse IV, Apr 21 2016

Examples

			2.37228132326901432992530573410946465911013222899139618384993873528...
		

Crossrefs

Programs

Formula

A235162 - 1.

A320029 Decimal expansion of sqrt(9 + sqrt(9 + sqrt(9 + sqrt(9 + ...)))) = (sqrt(37) + 1)/2.

Original entry on oeis.org

3, 5, 4, 1, 3, 8, 1, 2, 6, 5, 1, 4, 9, 1, 0, 9, 8, 4, 4, 4, 9, 9, 8, 4, 2, 1, 2, 2, 6, 0, 1, 0, 3, 3, 5, 3, 1, 0, 4, 2, 4, 8, 5, 0, 4, 7, 3, 9, 3, 2, 0, 5, 5, 9, 3, 2, 0, 9, 5, 7, 6, 5, 2, 3, 2, 4, 3, 1, 6, 6, 3, 6, 2, 6, 5, 9, 4, 5, 5, 1, 1, 9, 9, 0, 1, 5, 3, 3, 2, 1, 3, 9, 7, 8, 9, 2, 4, 3, 3, 1, 7, 1, 5, 4, 6
Offset: 1

Views

Author

Robert G. Wilson v, Oct 03 2018

Keywords

Comments

For x >= 0, sqrt(x + sqrt(x + sqrt(x + sqrt(x + ...)))) = (sqrt(4*x+1) + 1)/2. This is an integer for each x such that 2*x is a term in A000217.

Examples

			3.541381265149109844499842122601033531042485047393205593209576523243166362659...
		

Crossrefs

Programs

  • Maple
    evalf((sqrt(37)+1)/2,120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    RealDigits[ Fold[ Sqrt[#1 + #2] &, 0, Table[9, {135}]], 10, 111][[1]] (* or *)
    RealDigits[(Sqrt[37] + 1)/2, 10, 111][[1]]
  • PARI
    (sqrt(37)+1)/2 \\ Altug Alkan, Oct 03 2018

Formula

Minimal polynomial: x^2 - x - 9. - Stefano Spezia, Jul 02 2025
Showing 1-3 of 3 results.