cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A090488 Decimal expansion of 2 + 2*sqrt(2).

Original entry on oeis.org

4, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Side length of smallest square containing five circles of radius 1. - Charles R Greathouse IV, Apr 05 2011
Equals n + n/(n +n/(n +n/(n +....))) for n = 4. See also A090388. - Stanislav Sykora, Jan 23 2014
Also the area of a regular octagon with unit edge length. - Stanislav Sykora, Apr 12 2015
The positive solution to x^2 - 4*x - 4 = 0. The negative solution is -1 * A163960 = -0.82842... . - Michal Paulovic, Dec 12 2023

Examples

			4.828427124746190097603377448419396157139343750...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Cf. Areas of other regular polygons: A120011, A102771, A104956, A178817, A256853, A178816, A256854, A178809.

Programs

Formula

Equals 1 + A086178 = 2*A014176. - R. J. Mathar, Sep 03 2007
From Michal Paulovic, Dec 12 2023: (Start)
Equals A010466 + 2.
Equals A156035 - 1.
Equals A157258 - 5.
Equals A163960 + 4.
Equals A365823 - 2.
Equals [4; 1, 4, ...] (periodic continued fraction expansion).
Equals sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * ...)))). (End)

Extensions

Better definition from Rick L. Shepherd, Jul 02 2004

A090550 Decimal expansion of solution to n/x = x - n for n = 5.

Original entry on oeis.org

5, 8, 5, 4, 1, 0, 1, 9, 6, 6, 2, 4, 9, 6, 8, 4, 5, 4, 4, 6, 1, 3, 7, 6, 0, 5, 0, 3, 0, 9, 6, 9, 1, 4, 3, 5, 3, 1, 6, 0, 9, 2, 7, 5, 3, 9, 4, 1, 7, 2, 8, 8, 5, 8, 6, 4, 0, 6, 3, 4, 5, 8, 6, 8, 1, 1, 5, 7, 8, 1, 3, 8, 8, 4, 5, 6, 7, 0, 7, 3, 4, 9, 1, 2, 1, 6, 2, 1, 6, 1, 2, 5, 6, 8, 1, 7, 3, 4, 1, 2, 4
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x - n with n = 1 gives the Golden Ratio = 1.6180339887...
Equals n + n/(n + n/(n + n/(n + ....))) for n = 5. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			5.85410196624968454...
		

Crossrefs

Cf. n + n/(n + n/(n + ...)): A090388 (n = 2), A090458 (n = 3), A090488 (n = 4), A092294 (n = 6), A092290 (n = 7), A090654 (n = 8), A090655 (n = 9), A090656 (n = 10). - Stanislav Sykora, Jan 23 2014

Programs

  • Mathematica
    RealDigits[(5 + 3 Sqrt[5])/2, 10, 120][[1]] (* Harvey P. Dale, Nov 27 2013 *)
  • PARI
    (5 + 3*sqrt(5))/2 \\ G. C. Greubel, Jul 03 2017

Formula

n/x = x - n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 5: x = (5 + sqrt(45))/2 = 5.85410196624968454...
Equals (5 + 3*sqrt(5))/2 = 1 + 3*phi = sqrt(5)*(phi)^2, where phi is the golden ratio. - G. C. Greubel, Jul 03 2017
Equals 2*phi^3 - phi^2. - Michel Marcus, Apr 20 2020
Minimal polynomial is x^2 - 5x - 5 (this number is an algebraic integer). - Alonso del Arte, Apr 20 2020(n).
Equals lim_{n->oo} A057088(n+1)/A057088(n) = 1 + 3*phi. - Wolfdieter Lang, Nov 16 2023

A090458 Decimal expansion of (3 + sqrt(21))/2.

Original entry on oeis.org

3, 7, 9, 1, 2, 8, 7, 8, 4, 7, 4, 7, 7, 9, 2, 0, 0, 0, 3, 2, 9, 4, 0, 2, 3, 5, 9, 6, 8, 6, 4, 0, 0, 4, 2, 4, 4, 4, 9, 2, 2, 2, 8, 2, 8, 8, 3, 8, 3, 9, 8, 5, 9, 5, 1, 3, 0, 3, 6, 2, 1, 0, 6, 1, 9, 5, 3, 4, 3, 4, 2, 1, 2, 7, 7, 3, 8, 8, 5, 4, 4, 3, 3, 0, 2, 1, 8, 0, 7, 7, 9, 7, 4, 6, 7, 2, 2, 5, 1, 6, 3
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Decimal expansion of the solution to n/x = x-n for n-3. n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 3: x = (3 + sqrt(21))/2 = 3.79128784747792...
x=3.7912878474... is the shape of a rectangle whose geometric partition (as at A188635) consists of 3 squares, then 1 square, then 3 squares, etc., matching the continued fraction of x, which is [3,1,3,1,3,1,3,1,3,1,...]. (See the Mathematica program below.) - Clark Kimberling, May 05 2011
x appears to be the limit for n to infinity of the ratio of the number of even numbers that take n steps to reach 1 to the number of odd numbers that take n steps to reach 1 in the Collatz iteration. As A005186(n-1) is the number of even numbers that take n steps to reach 1, this means x = lim A005186(n-1)/A176866(n). - Markus Sigg, Oct 20 2020
From Wolfdieter Lang, Sep 02 2022: (Start)
This integer in the quadratic number field Q(sqrt(21)) equals the (real) cube root of 27 + 6*sqrt(21) = 54.4954541... . See Euler, Elements of Algebra, Article 748 or Algebra (in German) p. 306, Kapitel 12, 187.
Subtracting 3 from the present number gives the (real) cube root of
-27 + 6*sqrt(21) = 0.4954541... . (End)

Examples

			3.79128784747792...
		

References

  • Leonhard Euler, Vollständige Anleitung zur Algebra, (1770), Reclam, Leipzig, 1883, p.306, Kapitel 12, 187.

Crossrefs

Of the same type as this: A090388 (n=2), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10).
Equals 3*A176014 (constant).
Cf. A356034.

Programs

Formula

Equals (27 + 6*sqrt(21))^(1/3). - Wolfdieter Lang, Sep 01 2022

Extensions

Additional comments from Rick L. Shepherd, Jul 02 2004

A019884 Decimal expansion of sine of 75 degrees.

Original entry on oeis.org

9, 6, 5, 9, 2, 5, 8, 2, 6, 2, 8, 9, 0, 6, 8, 2, 8, 6, 7, 4, 9, 7, 4, 3, 1, 9, 9, 7, 2, 8, 8, 9, 7, 3, 6, 7, 6, 3, 3, 9, 0, 4, 8, 3, 9, 0, 0, 8, 4, 0, 4, 5, 5, 0, 4, 0, 2, 3, 4, 3, 0, 7, 6, 3, 1, 0, 4, 2, 3, 2, 1, 3, 9, 7, 9, 8, 5, 5, 5, 1, 6, 3, 4, 7, 5, 6, 1, 7, 4, 1, 8, 5, 8, 0, 7, 0, 4, 5, 1
Offset: 0

Views

Author

Keywords

Comments

Also the real part of i^(1/6). - Stanislav Sykora, Apr 25 2012
Length of one side of the new Type 15 Convex Pentagon. - Michel Marcus, Aug 04 2015

Examples

			0.96592582628906828674974319972889736763390483900840455040234307631042...
		

Crossrefs

Cf. A120683.

Programs

Formula

Equals cos(Pi/12) = [1+sqrt(3)]/[2*sqrt(2)] = A090388 * A020765. - R. J. Mathar, Jun 18 2006
Equals A019859 * A019874 + A019834 * A019849 = A019881 * A019896 + A019812 * A019827 . - R. J. Mathar, Jan 27 2021
Equals 1/(sqrt(6) - sqrt(2)) = 1/A120683. - Amiram Eldar, Aug 04 2022
Largest of the 4 real-valued roots of 16*x^4 -16*x^2 +1=0. - R. J. Mathar, Aug 29 2025
4*this^3 -3*this = A010503. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8 ;1/2;3/4) = 2F1(-1/6,1/6;1/2;1/2). - R. J. Mathar, Aug 31 2025

A090654 Decimal expansion of 4 + 2*sqrt(6).

Original entry on oeis.org

8, 8, 9, 8, 9, 7, 9, 4, 8, 5, 5, 6, 6, 3, 5, 6, 1, 9, 6, 3, 9, 4, 5, 6, 8, 1, 4, 9, 4, 1, 1, 7, 8, 2, 7, 8, 3, 9, 3, 1, 8, 9, 4, 9, 6, 1, 3, 1, 3, 3, 4, 0, 2, 5, 6, 8, 6, 5, 3, 8, 5, 1, 3, 4, 5, 0, 1, 9, 2, 0, 7, 5, 4, 9, 1, 4, 6, 3, 0, 0, 5, 3, 0, 7, 9, 7, 1, 8, 8, 6, 6, 2, 0, 9, 2, 8, 0, 4, 6, 9, 6
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n +n/(n +n/(n +n/(n +....))) for n = 8. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			8.898979485566356196394568149...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Essentially the same as A010480.

Programs

  • Mathematica
    RealDigits[4 + 2*Sqrt[6], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    4 + 2*sqrt(6) \\ G. C. Greubel, Jul 03 2017

A092290 Decimal expansion of solution to n/x = x-n for n = 7.

Original entry on oeis.org

7, 8, 8, 7, 4, 8, 2, 1, 9, 3, 6, 9, 6, 0, 6, 1, 0, 3, 0, 2, 0, 3, 1, 9, 4, 1, 5, 3, 7, 0, 8, 1, 5, 4, 7, 8, 0, 4, 3, 7, 9, 3, 8, 4, 1, 3, 7, 7, 7, 2, 5, 1, 7, 9, 5, 4, 6, 3, 8, 4, 7, 8, 1, 4, 8, 9, 1, 3, 8, 2, 3, 2, 3, 1, 0, 9, 6, 5, 3, 1, 4, 0, 8, 3, 7, 8, 4, 6, 5, 7, 8, 5, 3, 4, 3, 5, 2, 8, 7, 7, 9
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
Equals n +n/(n +n/(n +n/(n +....))) for n = 7. See also A090388. - Stanislav Sykora, Jan 23 2014

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

Formula

n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 7: x = (7 + sqrt(77))/2 = 7.88748219369606...

A092294 Decimal expansion of 3 + sqrt(15).

Original entry on oeis.org

6, 8, 7, 2, 9, 8, 3, 3, 4, 6, 2, 0, 7, 4, 1, 6, 8, 8, 5, 1, 7, 9, 2, 6, 5, 3, 9, 9, 7, 8, 2, 3, 9, 9, 6, 1, 0, 8, 3, 2, 9, 2, 1, 7, 0, 5, 2, 9, 1, 5, 9, 0, 8, 2, 6, 5, 8, 7, 5, 7, 3, 7, 6, 6, 1, 1, 3, 4, 8, 3, 0, 9, 1, 9, 3, 6, 9, 7, 9, 0, 3, 3, 5, 1, 9, 2, 8, 7, 3, 7, 6, 8, 5, 8, 6, 7, 3, 5, 1, 7, 9
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n +n/(n +n/(n +n/(n +....))) for n = 6. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			6.87298334620741688...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

Formula

Equals A010472 plus 3. - R. J. Mathar, Sep 08 2008
Equals 1/A176016 + 6. - Hugo Pfoertner, Mar 19 2024

A090655 Decimal expansion of solution to n/x = x-n for n = 9.

Original entry on oeis.org

9, 9, 0, 8, 3, 2, 6, 9, 1, 3, 1, 9, 5, 9, 8, 3, 9, 3, 9, 6, 7, 8, 8, 3, 1, 9, 0, 1, 2, 0, 5, 7, 4, 3, 9, 1, 9, 3, 7, 6, 9, 4, 4, 8, 6, 0, 7, 6, 7, 8, 6, 9, 3, 1, 9, 0, 6, 5, 6, 7, 9, 5, 8, 4, 3, 4, 0, 7, 5, 0, 4, 2, 2, 4, 3, 9, 5, 1, 5, 6, 6, 7, 8, 0, 6, 9, 2, 8, 6, 2, 3, 0, 2, 7, 7, 3, 6, 0, 7, 6, 5
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

n/x = x-n with n=1 gives the Golden Ratio = 1.6180339887...
Equals n +n/(n +n/(n +n/(n +....))) for n = 9. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			9.90832691319598...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090656 (n=10). - Stanislav Sykora, Jan 23 2014

Programs

  • Mathematica
    RealDigits[(3/2)*(3+Sqrt[13]), 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    (3/2)*(3 + sqrt(13)) \\ G. C. Greubel, Jul 03 2017

Formula

n/x = x-n ==> x^2 - n*x - n = 0 ==> x = (n + sqrt(n^2 + 4*n)) / 2 (Positive Root) n = 9: x = (9 + sqrt(117))/2 = 9.90832691319598...
Equals (3/2)*(3 + sqrt(13)). - G. C. Greubel, Jul 03 2017

A090656 Decimal expansion of 5 + sqrt(35).

Original entry on oeis.org

1, 0, 9, 1, 6, 0, 7, 9, 7, 8, 3, 0, 9, 9, 6, 1, 6, 0, 4, 2, 5, 6, 7, 3, 2, 8, 2, 9, 1, 5, 6, 1, 6, 1, 7, 0, 4, 8, 4, 1, 5, 5, 0, 1, 2, 3, 0, 7, 9, 4, 3, 4, 0, 3, 2, 2, 8, 7, 9, 7, 1, 9, 6, 6, 9, 1, 4, 2, 8, 2, 2, 4, 5, 9, 1, 0, 5, 6, 5, 3, 0, 3, 6, 7, 6, 5, 7, 5, 2, 5, 2, 7, 1, 8, 3, 1, 0, 9, 1, 7, 8, 0
Offset: 2

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Equals n+n/(n+n/(n+n/(n+....))) for n = 10. See also A090388. - Stanislav Sykora, Jan 23 2014

Examples

			10.9160797830996160...
		

Crossrefs

Equals A010490 plus 5. - R. J. Mathar, Sep 08 2008
Cf. A161321.
Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090488 (n=4), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9). - Stanislav Sykora, Jan 23 2014

Programs

A165663 Decimal expansion of 3 + sqrt(3).

Original entry on oeis.org

4, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6, 7, 5, 6, 2
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2009

Keywords

Comments

Arises as an upper limit of indices of subfactors in the extended Haagerup planar algebra (see Bigelow et al.)
Perimeter of a 30-60-90 triangle with shortest side equal to 1. - Wesley Ivan Hurt, Apr 09 2016
Surface area of an elongated triangular pyramid (Johnson solid J_7) with unit edges. - Paolo Xausa, Aug 02 2025

Examples

			4.732050807568877293527446341505872366942805253810380628...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 3 + Sqrt(3); // G. C. Greubel, Nov 20 2018
    
  • Maple
    Digits:=100: evalf(3+sqrt(3)); # Wesley Ivan Hurt, Apr 09 2016
  • Mathematica
    RealDigits[3 + Sqrt[3], 10, 100][[1]] (* Wesley Ivan Hurt, Apr 09 2016 *)
  • PARI
    default(realprecision, 100); 3 + sqrt(3) \\ G. C. Greubel, Nov 20 2018
    
  • Sage
    numerical_approx(3+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018

Formula

Equals 4 + A160390 = 1 + A019973 = 2 + A090388 = 3 + A002194. - R. J. Mathar, Sep 27 2009
Showing 1-10 of 25 results. Next