cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A240735 a(n) = floor(6^n/(3+sqrt(3))^n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 13, 17, 21, 27, 35, 44, 56, 71, 90, 115, 146, 185, 235, 298, 378, 479, 607, 770, 977, 1238, 1570, 1991, 2525, 3202, 4060, 5148, 6527, 8276, 10494, 13306, 16872, 21393, 27125, 34393, 43609, 55294, 70111, 88897, 112717, 142919
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 11 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of a dodecaflake after n iterations, let a(0) = 1. The total number of sides is 12*A000400(n). The total number of holes is A240846. 3 + sqrt(3) = A165663.

Crossrefs

Cf. A000400, A240846, A165663, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240735 (dodecaflake).

Programs

  • Maple
    A240735:=n->floor(6^n/(3+sqrt(3))^n); seq(A240735(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
  • Mathematica
    Table[Floor[6^n/(3 + Sqrt[3])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
  • PARI
    {a(n)=floor(6^n/(3+sqrt(3))^n)}
           for (n=0, 100, print1(a(n), ", "))

A094433 a(n) is the left term in M^n * [1 0 0], M = the 3 X 3 matrix [1 -1 0 / -1 3 -2 / 0 -2 2].

Original entry on oeis.org

1, 1, 2, 6, 24, 108, 504, 2376, 11232, 53136, 251424, 1189728, 5629824, 26640576, 126064512, 596543616, 2822874624, 13357986048, 63210668544, 299116094976, 1415432558592, 6697898781696, 31694797338624, 149981391341568, 709719564017664, 3358429036056576
Offset: 0

Views

Author

Gary W. Adamson, May 02 2004

Keywords

Comments

Right term of M^n * [1 0 0] = A094434(n).
a(n)/a(n-1) tends to 3 + sqrt(3) = 4.732050807... (A165663).
A094434(n)/a(n) tends to 1 + sqrt(3) = 2.732050807... (A090388).
M is a "stiffness matrix" with k1 = 1, k2 = 2; in K = [k1 -k1 0 / -k1 (k1 + k2) -k2 / 0 -k2 k2], where K relates to Hooke's Law governing the force on nodes of springs resulting from stretching or compressing the springs (see A094431).
The eigenvalues of M are 3+sqrt(3), 3-sqrt(3) and 0. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008
a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4, 5>2, 5>3, 5>4} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the elements in positions 1 and 5 are larger than the elements in positions 2, 3 and 4. - Sergey Kitaev, Dec 11 2020

Examples

			a(4) = 24 since M^4 * [1 0 0] = [24 -84 60].
G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 108*x^5 + 504*x^6 + 2376*x^7 + ...
		

References

  • Carl D. Meyer, "Matrix Analysis and Applied Linear Algebra", SIAM, 2000, p. 86-87.

Crossrefs

Programs

  • Maple
    a:= n-> (<<1|-1|0>, <-1|3|-2>, <0|-2|2>>^n)[1$2]:
    seq(a(n), n=0..28);  # Alois P. Heinz, Dec 11 2020
  • Mathematica
    Table[(MatrixPower[{{1, -1, 0}, {-1, 3, -2}, {0, -2, 2}}, n].{1, 0, 0})[[1]], {n, 24}] (* Robert G. Wilson v *)
    Table[(3 + Sqrt[3])^n + (3 - Sqrt[3])^n, {n, 0, 20}] // Simplify (* Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008 *)
    Rest@ CoefficientList[Series[x (1 - 4 x)/(1 - 6 x + 6 x^2), {x, 0, 23}], x] (* Michael De Vlieger, May 01 2019 *)
  • Sage
    [lucas_number2(n,6,6)for n in range(-1,23)] # Zerinvary Lajos, Jul 08 2008

Formula

a(n) = (3+sqrt(3))^(n-2) + (3-sqrt(3))^(n-2). - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008 [Corrected by R. J. Mathar, Mar 28 2010, Jun 02 2010]
G.f.: 1 + x*(1-4*x)/(1-6*x+6*x^2). - R. J. Mathar, Mar 28 2010

Extensions

More terms from Robert G. Wilson v, May 08 2004
a(0)=1 prepended by Alois P. Heinz, Dec 11 2020

A383852 Decimal expansion of the volume of an elongated triangular pyramid with unit edge.

Original entry on oeis.org

5, 5, 0, 8, 6, 3, 8, 3, 2, 0, 8, 9, 9, 7, 7, 2, 4, 4, 1, 1, 5, 3, 3, 5, 6, 4, 5, 7, 2, 7, 2, 7, 6, 2, 6, 4, 9, 4, 9, 8, 4, 0, 6, 3, 6, 4, 0, 0, 6, 7, 4, 1, 6, 3, 1, 1, 2, 0, 0, 8, 3, 8, 9, 6, 9, 5, 5, 4, 4, 2, 9, 4, 0, 9, 9, 0, 4, 2, 2, 6, 2, 5, 0, 7, 8, 1, 8, 8, 4, 1
Offset: 0

Views

Author

Paolo Xausa, May 19 2025

Keywords

Comments

The elongated triangular pyramid is Johnson solid J_7.

Examples

			0.55086383208997724411533564572727626494984063640067...
		

Crossrefs

Cf. A165663 (surface area).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[2] + Sqrt[27])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J7", "Volume"], 10, 100]]

Formula

Equals (sqrt(2) + 3*sqrt(3))/12 = (A002193 + A010482)/12.
Minimal polynomial: 20736*x^4 - 8352*x^2 + 625. - Stefano Spezia, May 19 2025

A384139 Decimal expansion of the volume of an elongated triangular bipyramid with unit edges.

Original entry on oeis.org

6, 6, 8, 7, 1, 4, 9, 6, 2, 2, 8, 7, 7, 3, 5, 1, 6, 4, 8, 4, 8, 8, 0, 9, 7, 0, 6, 0, 7, 8, 0, 8, 4, 4, 3, 8, 1, 6, 3, 9, 7, 9, 9, 5, 9, 3, 4, 8, 7, 5, 3, 1, 6, 9, 2, 1, 0, 0, 6, 5, 0, 3, 4, 5, 2, 8, 1, 0, 5, 3, 3, 3, 9, 7, 0, 8, 8, 4, 5, 1, 5, 7, 4, 5, 3, 5, 1, 1, 3, 5
Offset: 0

Views

Author

Paolo Xausa, May 20 2025

Keywords

Comments

The elongated triangular bipyramid is Johnson solid J_14.
Also the volume of an augmented triangular prism (Johnson solid J_49) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			0.66871496228773516484880970607808443816397995934875...
		

Crossrefs

Cf. A165663 (surface area - 2).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[8] + Sqrt[27])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J14", "Volume"], 10, 100]]

Formula

Equals (2*sqrt(2) + 3*sqrt(3))/12 = (A010466 + A010482)/12.
Equals the largest root of 20736*x^4 - 10080*x^2 + 361.

A156309 Decimal expansion of the absolute value of the larger solution of (n^2+n)/2 = -1/12. (Real root q of 6n^2 + 6n + 1, the other root being p = -1-q.)

Original entry on oeis.org

2, 1, 1, 3, 2, 4, 8, 6, 5, 4, 0, 5, 1, 8, 7, 1, 1, 7, 7, 4, 5, 4, 2, 5, 6, 0, 9, 7, 4, 9, 0, 2, 1, 2, 7, 2, 1, 7, 6, 1, 9, 9, 1, 2, 4, 3, 6, 4, 9, 3, 6, 5, 6, 1, 9, 9, 0, 6, 9, 8, 8, 3, 6, 7, 5, 8, 0, 1, 1, 1, 6, 3, 8, 4, 8, 5, 3, 3, 3, 2, 7, 1, 5, 3, 1, 4, 2, 3, 0, 2, 2, 0, 7, 1, 2, 5, 2, 3, 7, 3, 8, 7, 3, 9
Offset: 0

Views

Author

Daniele P. Morelli, Feb 07 2009

Keywords

Comments

The formula returning the n-th triangular number (A000217) is (n^2+n)/2. On the other hand, Ramanujan's identity claims that the value of the infinite sum 1+2+3+.... is -1/12. This irrational number is the solution of the equation (n^2+n)/2 = -1/12, that is, the "limit" triangular number.
Equals the Knuth's random generators constant, that is, the ratio c/m in congruence random number generators of the type X_(n+1) = (aX_n +c) mod (m) which minimizes the correlation between successive values. - Stanislav Sykora, Nov 13 2013
It is also the fraction of the full solid angle cut out by a cone having the magic angle (A195696) as its polar angle. - Stanislav Sykora, Nov 13 2013

Examples

			The two roots of 6n^2 + 6n + 1 = 0 are -0.21132... and -0.78867513... (Cf. A020769.)
		

References

  • B. Candelpergher, Ramanujan summation of divergent series. Lectures notes in mathematics 2185, Springer 2017.
  • D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, 1969, Chapter 3.3.3.

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(3 - Sqrt[3])/6, 10, 100]] (* Paolo Xausa, Jun 25 2024 *)
  • PARI
    abs(solve(n=-1/2, 0, 6*n^2+6*n+1)) \\ Michel Marcus, Oct 05 2013

Formula

(1 - 1/sqrt(3))/2 = (1 - A020760)/2 = 1/2 - A020769. - R. J. Mathar, Feb 10 2009
Equals - HurwitzZeta(-1, (9 - sqrt(3))/6). - Peter Luschny, Jul 05 2020
Equals (3 - sqrt(3))/6. - Michel Marcus, Jun 10 2021
Equals 1/A165663 = A334843/3. - Hugo Pfoertner, Jun 25 2024

Extensions

Flipped sign of definition, corrected offset, simplified formula R. J. Mathar, Feb 10 2009

A321120 Decimal expansion of (3 + sqrt(3))/12.

Original entry on oeis.org

3, 9, 4, 3, 3, 7, 5, 6, 7, 2, 9, 7, 4, 0, 6, 4, 4, 1, 1, 2, 7, 2, 8, 7, 1, 9, 5, 1, 2, 5, 4, 8, 9, 3, 6, 3, 9, 1, 1, 9, 0, 0, 4, 3, 7, 8, 1, 7, 5, 3, 1, 7, 1, 9, 0, 0, 4, 6, 5, 0, 5, 8, 1, 6, 2, 0, 9, 9, 4, 4, 1, 8, 0, 7, 5, 7, 3, 3, 3, 3, 6, 4, 2, 3, 4, 2, 8
Offset: 0

Views

Author

Keywords

Comments

The smallest weight in Holladay-Sard's quadrature formula for semi-infinite integrals.

Examples

			0.3943375672974064411272871951...
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967.

Crossrefs

Programs

  • Maple
    Digits := 1000; evalf((3 + sqrt(3))/12);
  • Mathematica
    RealDigits[(3 + Sqrt[3])/12, 10, 100][[1]]
  • PARI
    (3 + sqrt(3))/12

Formula

Equals lim_{n->infinity} A321118(0,n)/A321119(n).
Irrational number represented by the periodic continued fraction [0, 2, 1, 1; [6, 2]].
Largest real root of 1 - 12*x + 24*x^2.

A297701 Decimal expansion of 1 + sqrt(2) + sqrt(3).

Original entry on oeis.org

4, 1, 4, 6, 2, 6, 4, 3, 6, 9, 9, 4, 1, 9, 7, 2, 3, 4, 2, 3, 2, 9, 1, 3, 5, 0, 6, 5, 7, 1, 5, 5, 7, 0, 4, 4, 5, 5, 1, 2, 4, 7, 7, 1, 2, 9, 1, 8, 7, 3, 2, 8, 7, 0, 1, 2, 3, 2, 4, 8, 6, 7, 1, 7, 4, 4, 2, 6, 6, 5, 4, 9, 5, 3, 7, 0, 9, 0, 7, 0, 7, 5, 9, 3, 1, 5, 3, 3, 7, 2, 1, 0, 8, 4, 8, 9, 0, 1, 4, 8, 4, 1, 0, 6, 3, 9, 9, 8, 7, 6, 4, 6, 3, 1, 9, 0, 0, 0, 0, 5
Offset: 1

Views

Author

Alonso del Arte, Jan 03 2018

Keywords

Comments

This is an algebraic integer of degree 4, with minimal polynomial x^4 - 4*x^3 - 4*x^2 + 16*x - 8.

Examples

			  1.0000000000000000000000000000...
+ 1.4142135623730950488016887242...
+ 1.7320508075688772935274463415...
= 4.1462643699419723423291350657...
		

Crossrefs

Essentially the same as A135611. Cf. A002193, A002194, A014176, A165663, A188582.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 1 + Sqrt(2) + Sqrt(3); // G. C. Greubel, Nov 20 2018
    
  • Mathematica
    RealDigits[1 + Sqrt[2] + Sqrt[3], 10, 100][[1]]
  • PARI
    1+sqrt(2)+sqrt(3) \\ Felix Fröhlich, Jan 06 2018
    
  • Sage
    numerical_approx(1+sqrt(2)+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018

Formula

1 + sqrt(2) + sqrt(3) = 1 + sqrt(5 + 2 sqrt(6)).

Extensions

Terms a(52) onward corrected by G. C. Greubel, Nov 20 2018

A276265 Expansion of (1 + 2*x)/(1 - 6*x + 6*x^2).

Original entry on oeis.org

1, 8, 42, 204, 972, 4608, 21816, 103248, 488592, 2312064, 10940832, 51772608, 244990656, 1159308288, 5485905792, 25959585024, 122842075392, 581294942208, 2750717200896, 13016533552128, 61594898107392, 291470187331584, 1379251735345152, 6526689288081408, 30884625316417536
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2016

Keywords

Comments

Satisfies recurrence relations system a(n) = 4*a(n-1) + 2*b(n-1), b(n) = 2*b(n-1) + a(n-1), a(0)=1, b(0)=2.
More generally, for the recurrence relations system a(n) = 4*a(n-1) + 2*b(n-1), b(n) = 2*b(n-1) + a(n-1), a(0)=k, b(0)=m solution is a(n) = (((sqrt(3) - 1)*k - 2*m)*(3 - sqrt(3))^n + (sqrt(3)*k + k + 2*m)*(3 + sqrt(3))^n)/(2*sqrt(3)), b(n) = ((-k + sqrt(3)*m + m)*(3 - sqrt(3))^n + (k + (sqrt(3) - 1)*m)*(3 + sqrt(3))^n)/(2*sqrt(3)).
Convolution of A030192 and {1, 2, 0, 0, 0, 0, 0, ...}.

Crossrefs

Programs

  • Maple
    a:=series((1+2*x)/(1-6*x+6*x^2),x=0,25): seq(coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    LinearRecurrence[{6, -6}, {1, 8}, 25]
    CoefficientList[Series[(1 + 2 x)/(1 - 6 x + 6 x^2), {x, 0, 24}], x] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    Vec((1+2*x)/(1-6*x+6*x^2) + O(x^99)) \\ Altug Alkan, Aug 26 2016

Formula

O.g.f.: (1 + 2*x)/(1 - 6*x + 6*x^2).
E.g.f.: (5*sqrt(3)*sinh(sqrt(3)*x) + 3*cosh(sqrt(3)*x))*exp(3*x)/3.
a(n) = 6*a(n-1) - 6*a(n-2).
a(n) = ((-5 + sqrt(3))*(3 - sqrt(3))^n + (5 + sqrt(3))*(3 + sqrt(3))^n)/(2*sqrt(3)).
Lim_{n->infinity} a(n+1)/a(n) = 3 + sqrt(3) = A165663.
a(n) = A030192(n)+2*A030192(n-1). - R. J. Mathar, Jan 25 2023

A344111 Decimal expansion of 4 + sqrt(3).

Original entry on oeis.org

5, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, May 10 2021

Keywords

Comments

Decimal expansion of the surface area of a gyrobifastigium with regular faces and unit edge length.
Essentially the same sequence of digits as A176102, A165663, A160390, A090388, A019973 and A002194. - R. J. Mathar, May 16 2021

Examples

			5.73205080756887729...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[4 + Sqrt[3], 10, 100] // Flatten
Showing 1-9 of 9 results.