cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A057084 Scaled Chebyshev U-polynomials evaluated at sqrt(2).

Original entry on oeis.org

1, 8, 56, 384, 2624, 17920, 122368, 835584, 5705728, 38961152, 266043392, 1816657920, 12404916224, 84706066432, 578409201664, 3949625081856, 26969727041536, 184160815677440, 1257528709087232, 8586943147278336
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

From Kival Ngaokrajang, Dec 14 2014 (Start):
-2*a(n-1) is the irrational part of the integer in Q(sqrt 2) giving the length of a Levy C-curve variant L(n)=(2*(2- sqrt 2))^n at iteration step n. The length of this C-curve is an integer in the real quadratic number field Q(sqrt 2), namely L(n) = A(n)+B(n)*sqrt(2) with A(n) = A084130(n) and B(n) = -2*a(n-1). See the construction rule and the illustration in the links.
The fractal dimension of the Levy C-curve is 2, but for this modified case it is log(4)/log(2 + sqrt 2) = 1.1289527...
(End)
For lim_{n->oo} a(n+1)/a(n) = 2*(2 + sqrt(2)) = 6.82842... see A365823. - Wolfdieter Lang, Nov 15 2023

Examples

			The first pairs [A(n),B(n)] determining the length L(n) are : [1, 0], [4, -2], [24, -16], [160, -112], [1088, -768], [7424, -5248], [50688, -35840], [346112, -244736], [2363392, -1671168], [16138240, -11411456], ... _Kival Ngaokrajang_, Dec 14 2014
		

References

  • S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.

Crossrefs

Programs

Formula

a(n) = 8*(a(n-1)-a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, 2*sqrt(2))*(2*sqrt(2))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
a(2*k) = A002315(k)*8^k, a(2*k+1) = A001109(k+1)*8^(k+1).
G.f.: 1/(1-8*x+8*x^2).
a(n) = Sum_{k, 0<=k<=n} A109466(n,k)*8^k. [Philippe Deléham, Oct 28 2008]
Binomial transform of A002315. [Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009]

A090488 Decimal expansion of 2 + 2*sqrt(2).

Original entry on oeis.org

4, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4
Offset: 1

Views

Author

Felix Tubiana, Feb 05 2004

Keywords

Comments

Side length of smallest square containing five circles of radius 1. - Charles R Greathouse IV, Apr 05 2011
Equals n + n/(n +n/(n +n/(n +....))) for n = 4. See also A090388. - Stanislav Sykora, Jan 23 2014
Also the area of a regular octagon with unit edge length. - Stanislav Sykora, Apr 12 2015
The positive solution to x^2 - 4*x - 4 = 0. The negative solution is -1 * A163960 = -0.82842... . - Michal Paulovic, Dec 12 2023

Examples

			4.828427124746190097603377448419396157139343750...
		

Crossrefs

Cf. n+n/(n+n/(n+...)): A090388 (n=2), A090458 (n=3), A090550 (n=5), A092294 (n=6), A092290 (n=7), A090654 (n=8), A090655 (n=9), A090656 (n=10). - Stanislav Sykora, Jan 23 2014
Cf. Areas of other regular polygons: A120011, A102771, A104956, A178817, A256853, A178816, A256854, A178809.

Programs

Formula

Equals 1 + A086178 = 2*A014176. - R. J. Mathar, Sep 03 2007
From Michal Paulovic, Dec 12 2023: (Start)
Equals A010466 + 2.
Equals A156035 - 1.
Equals A157258 - 5.
Equals A163960 + 4.
Equals A365823 - 2.
Equals [4; 1, 4, ...] (periodic continued fraction expansion).
Equals sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * sqrt(4 + 4 * ...)))). (End)

Extensions

Better definition from Rick L. Shepherd, Jul 02 2004

A100954 Decimal expansion of 7/2 - sqrt(2)/4.

Original entry on oeis.org

3, 1, 4, 6, 4, 4, 6, 6, 0, 9, 4, 0, 6, 7, 2, 6, 2, 3, 7, 7, 9, 9, 5, 7, 7, 8, 1, 8, 9, 4, 7, 5, 7, 5, 4, 8, 0, 3, 5, 7, 5, 8, 2, 0, 3, 1, 1, 5, 5, 7, 6, 2, 9, 8, 1, 7, 0, 5, 8, 3, 0, 0, 6, 5, 5, 0, 2, 3, 1, 6, 8, 8, 0, 3, 8, 4, 4, 7, 3, 2, 4, 0, 2, 8, 7, 4, 0, 3, 1, 1, 6, 4, 1, 8, 0, 8, 9, 6, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2005

Keywords

Comments

An approximation to Pi, see Blatner. - Robert G. Wilson v, Dec 15 2012
This constant is three plus the ratio of the area (A) to the perimeter (P) of an isosceles right triangle with unit legs, 3 + A/P = 3 + (1/2)/(2 + sqrt(2)). - José de Jesús Camacho Medina, Mar 02 2018

Examples

			3.14644660940672623779957781894757548035758203115576298170583...
		

References

  • David Blatner, Spectrums, Our Mind-Boggling Universe from Infinitesimal to Infinity, Walker & Co, USA, 2012.

Programs

Formula

Equals (14 - sqrt(2))/4 = 3 + 1/J, where J = 2*(2 + sqrt(2)) = A365823. - Wolfdieter Lang, Nov 11 2023
Showing 1-3 of 3 results.