A157262 a(n) = 36*n^2 - 55*n + 21.
2, 55, 180, 377, 646, 987, 1400, 1885, 2442, 3071, 3772, 4545, 5390, 6307, 7296, 8357, 9490, 10695, 11972, 13321, 14742, 16235, 17800, 19437, 21146, 22927, 24780, 26705, 28702, 30771, 32912, 35125, 37410, 39767, 42196, 44697, 47270
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[2, 55, 180]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 27 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{2,55,180},40] (* Vincenzo Librandi, Jan 27 2012 *) Table[36*n^2-55*n+21, {n,1,30}] (* G. C. Greubel, Feb 04 2018 *)
-
PARI
a(n)=36*n^2-55*n+21 \\ Charles R Greathouse IV, Dec 28 2011
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 27 2012
G.f.: x*(-2-49*x-21*x^2)/(x-1)^3. - Vincenzo Librandi, Jan 27 2012
E.g.f.: (36*x^2 - 19*x + 21)*exp(x) - 21. - G. C. Greubel, Feb 04 2018
Comments