cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157266 a(n) = 1728*n - 408.

Original entry on oeis.org

1320, 3048, 4776, 6504, 8232, 9960, 11688, 13416, 15144, 16872, 18600, 20328, 22056, 23784, 25512, 27240, 28968, 30696, 32424, 34152, 35880, 37608, 39336, 41064, 42792, 44520, 46248, 47976, 49704, 51432, 53160, 54888, 56616, 58344
Offset: 1

Views

Author

Vincenzo Librandi, Feb 26 2009

Keywords

Comments

The identity (10368*n^2-4896*n+577)^2-(36*n^2-17*n+2)*(1728*n-408)^2=1 can be written as A157267(n)^2-A157265(n)*a(n)^2=1 (see also the second comment in A157267). - Vincenzo Librandi, Jan 27 2012

Crossrefs

Programs

  • Magma
    I:=[1320, 3048]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 27 2012
    
  • Mathematica
    LinearRecurrence[{2,-1},{1320,3048},40] (* Vincenzo Librandi, Jan 27 2012 *)
    Table[1728n-408,{n,40}] (* Harvey P. Dale, Apr 18 2020 *)
  • PARI
    for(n=1, 40, print1(1728*n - 408", ")); \\ Vincenzo Librandi, Jan 27 2012

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 27 2012
G.f.: x*(1320+408*x)/(x-1)^2. - Vincenzo Librandi, Jan 27 2012
E.g.f.: 24*((72*x - 17)*exp(x) + 17). - G. C. Greubel, Feb 04 2018