cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157330 a(n) = 64*n - 8.

Original entry on oeis.org

56, 120, 184, 248, 312, 376, 440, 504, 568, 632, 696, 760, 824, 888, 952, 1016, 1080, 1144, 1208, 1272, 1336, 1400, 1464, 1528, 1592, 1656, 1720, 1784, 1848, 1912, 1976, 2040, 2104, 2168, 2232, 2296, 2360, 2424, 2488, 2552, 2616, 2680, 2744, 2808, 2872, 2936, 3000
Offset: 1

Views

Author

Vincenzo Librandi, Feb 27 2009

Keywords

Comments

The identity (128*n^2 - 32*n + 1)^2 - (4*n^2 - n)*(64*n - 8)^2 = 1 can be written as A157331(n)^2 - A033991(n)*a(n)^2 = 1. This is the case s=2 of the identity (8*n^2*s^4 - 8*n*s^2 + 1)^2 - (n^2*s^2 - n)*(8*n*s^3 - 4*s)^2 = 1. - Vincenzo Librandi, Jan 29 2012

Crossrefs

Programs

  • Magma
    I:=[56, 120]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
    
  • Mathematica
    LinearRecurrence[{2,-1},{56,120},50] (* Vincenzo Librandi, Jan 29 2012 *)
    64 Range[50]-8 (* Harvey P. Dale, Dec 31 2024 *)
  • PARI
    for(n=1, 40, print1(64*n - 8", ")); \\ Vincenzo Librandi, Jan 29 2012

Formula

From Vincenzo Librandi, Jan 29 2012: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: x*(8*x+56)/(x-1)^2. (End)
a(n) = 8*A004771(n-1). - Michel Marcus, Aug 19 2018
E.g.f.: 8*(exp(x)*(8*x - 1) + 1). - Elmo R. Oliveira, Apr 04 2025