cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157337 a(n) = 128*n^2 + 32*n + 1.

Original entry on oeis.org

161, 577, 1249, 2177, 3361, 4801, 6497, 8449, 10657, 13121, 15841, 18817, 22049, 25537, 29281, 33281, 37537, 42049, 46817, 51841, 57121, 62657, 68449, 74497, 80801, 87361, 94177, 101249, 108577, 116161, 124001, 132097, 140449, 149057
Offset: 1

Views

Author

Vincenzo Librandi, Feb 27 2009

Keywords

Comments

The identity (128*n^2+32*n+1)^2 - (4*n^2+n)*(64*n+8)^2 = 1 can be written as a(n)^2 - A007742(n)*A157336(n)^2 = 1 (see also second part of the comment in A157336). - Vincenzo Librandi, Jan 29 2012

Crossrefs

Programs

  • Magma
    I:=[161, 577, 1249]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{161,577,1249},50] (* Vincenzo Librandi, Jan 29 2012 *)
  • PARI
    for(n=1, 40, print1(128*n^2 + 32*n + 1", ")); \\ Vincenzo Librandi, Jan 29 2012

Formula

G.f.: x*(x^2 + 94*x + 161)/(1-x)^3. - Vincenzo Librandi, Jan 29 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 29 2012
a(n) = 2*A017077(n)^2 - 1. - Bruno Berselli, Jan 29 2012
E.g.f.: (1 + 160*x + 128*x^2)*exp(x) - 1. - G. C. Greubel, Feb 01 2018