cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157362 a(n) = 49*n^2 - 2*n.

Original entry on oeis.org

47, 192, 435, 776, 1215, 1752, 2387, 3120, 3951, 4880, 5907, 7032, 8255, 9576, 10995, 12512, 14127, 15840, 17651, 19560, 21567, 23672, 25875, 28176, 30575, 33072, 35667, 38360, 41151, 44040, 47027, 50112, 53295, 56576, 59955, 63432, 67007
Offset: 1

Views

Author

Vincenzo Librandi, Feb 28 2009

Keywords

Comments

The identity (4802*n^2-196*n+1)^2-(49*n^2-2*n)*(686*n-14)^2=1 can be written as A157364(n)^2-a(n)*A157363(n)^2=1.
The continued fraction expansion of sqrt(4*a(n)) is [14n-1; {1, 2, 2, 7n-1, 2, 2, 1, 28n-2}]. - Magus K. Chu, Sep 17 2022

Crossrefs

Programs

  • Magma
    I:=[47, 192, 435]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{47,192,435},50]
    Table[49n^2-2n,{n,40}] (* Harvey P. Dale, Jun 10 2019 *)
  • PARI
    a(n)=49*n^2-2*n \\ Charles R Greathouse IV, Dec 23 2011

Formula

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(47+51*x)/(1-x)^3.
E.g.f. x*(47 + 49*x)*exp(x). - G. C. Greubel, Feb 02 2018