A157362 a(n) = 49*n^2 - 2*n.
47, 192, 435, 776, 1215, 1752, 2387, 3120, 3951, 4880, 5907, 7032, 8255, 9576, 10995, 12512, 14127, 15840, 17651, 19560, 21567, 23672, 25875, 28176, 30575, 33072, 35667, 38360, 41151, 44040, 47027, 50112, 53295, 56576, 59955, 63432, 67007
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[47, 192, 435]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
Mathematica
LinearRecurrence[{3,-3,1},{47,192,435},50] Table[49n^2-2n,{n,40}] (* Harvey P. Dale, Jun 10 2019 *)
-
PARI
a(n)=49*n^2-2*n \\ Charles R Greathouse IV, Dec 23 2011
Formula
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(47+51*x)/(1-x)^3.
E.g.f. x*(47 + 49*x)*exp(x). - G. C. Greubel, Feb 02 2018
Comments