A157364 a(n) = 4802*n^2 - 196*n + 1.
4607, 18817, 42631, 76049, 119071, 171697, 233927, 305761, 387199, 478241, 578887, 689137, 808991, 938449, 1077511, 1226177, 1384447, 1552321, 1729799, 1916881, 2113567, 2319857, 2535751, 2761249, 2996351, 3241057, 3495367
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[4607, 18817, 42631]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
Mathematica
LinearRecurrence[{3,-3,1},{4607,18817,42631},50] Table[4802n^2-196n+1,{n,30}] (* Harvey P. Dale, Jul 29 2021 *)
-
PARI
a(n) = 4802*n^2-196*n+1
Formula
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(x^2 + 4996*x + 4607)/(1-x)^3.
E.g.f.: (1 + 4606*x + 4802*x^2)*exp(x) - 1. - G. C. Greubel, Feb 02 2018
Comments