cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157411 a(n) = 30*n^4 - 120*n^3 + 120*n^2 - 19.

Original entry on oeis.org

-19, 11, -19, 251, 1901, 6731, 17261, 36731, 69101, 119051, 191981, 294011, 431981, 613451, 846701, 1140731, 1505261, 1950731, 2488301, 3129851, 3887981, 4776011, 5807981, 6998651, 8363501, 9918731, 11681261, 13668731, 15899501, 18392651
Offset: 0

Views

Author

Paul Curtz, Feb 28 2009

Keywords

Comments

These are the numerators in column j=4 of the array in A140825 (reference p. 36).
The other columns in A140825 are represented by A000012, A005408, A140811 and A141530.
The link between these columns is given by the first differences: a(n+1) - a(n) = 30*A141530(n), where 30 = A027760(4) = A027760(3) = A027642(4) = A002445(2), then for j=3, A141530(n+1) - A141530(n) = A140070(2)*A140811(n).

References

  • P. Curtz, Integration numerique des systemes differentiels a conditions initiales, Centre de Calcul Scientifique de l'Armement, Note 12, Arcueil (1969).

Programs

  • Magma
    [30*n^4 - 120*n^3 + 120*n^2 - 19: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011
    
  • Mathematica
    Table[30n^4-120n^3+120n^2-19,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{-19,11,-19,251,1901},40] (* Harvey P. Dale, Mar 08 2015 *)
  • PARI
    a(n)=30*n^4-120*n^3+120*n^2-19 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n)= 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (-19 + 106*x - 264*x^2 + 646*x^3 + 251*x^4)/(1-x)^5.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 720. Fourth differences are constant, 720.

Extensions

Edited, one index corrected and extended by R. J. Mathar, Sep 17 2009