cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A157468 Primes of the form sqrt(p-1)-1, where p is a prime.

Original entry on oeis.org

3, 5, 13, 19, 23, 53, 73, 83, 89, 109, 149, 179, 223, 229, 239, 263, 269, 283, 313, 349, 383, 419, 439, 443, 463, 569, 593, 643, 653, 673, 739, 859, 863, 919, 929, 1009, 1069, 1093, 1123, 1289, 1319, 1373, 1409, 1429, 1433, 1439, 1459
Offset: 1

Views

Author

Keywords

Examples

			3 is in the sequence because 3 = sqrt(17 - 1) - 1, where 17 is prime.
5 is in the sequence because 5 = sqrt(37 - 1) - 1, where 37 is prime.
		

Crossrefs

Column k=1 of A238048 and A238086.

Programs

  • Mathematica
    Select[Sqrt[#-1]-1&/@Prime[Range[200000]],PrimeQ]  (* Harvey P. Dale, May 19 2012 *)

A157473 Primes p such that (p-2)^(1/3) -+ 2 are also primes.

Original entry on oeis.org

2, 127, 91127, 328511, 1157627, 2146691, 12326393, 125751503, 693154127, 751089431, 1033364333, 2102071043, 2222447627, 2893640627, 3314613773, 3951805943, 6591796877, 9063964127, 13464285941, 16406426423, 19880486831
Offset: 1

Views

Author

Keywords

Examples

			(127-2)^(1/3) - 2 = 3 and (127-2)^(1/3) + 2 = 7, so 127 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    q=2;lst={};Do[p=Prime[n];r=(p-q)^(1/3)-q;u=(p-q)^(1/3)+q;If[PrimeQ[r]&&PrimeQ[u],AppendTo[lst,p]],{n,4*9!}];lst
    lst = {}; p = 0; While[p < 2955, If[ PrimeQ[p - 2] && PrimeQ[p + 2] && PrimeQ[p^3 + 2], AppendTo[lst, p^3 + 2]]; p++ ]; lst (* Robert G. Wilson v, Mar 08 2009 *)
    Select[Prime[Range[10^6]],AllTrue[Surd[#-2,3]+{2,-2},PrimeQ]&] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Aug 31 2024 *)

Extensions

a(8)-a(21) from Robert G. Wilson v, Mar 08 2009
Showing 1-2 of 2 results.