A157476 a(n) = 2048n^2 + 128n + 1.
2177, 8449, 18817, 33281, 51841, 74497, 101249, 132097, 167041, 206081, 249217, 296449, 347777, 403201, 462721, 526337, 594049, 665857, 741761, 821761, 905857, 994049, 1086337, 1182721, 1283201, 1387777, 1496449, 1609217, 1726081, 1847041
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[2048n^2+128n+1,{n,30}] (* or *) LinearRecurrence[{3,-3,1},{2177,8449,18817},30] (* Harvey P. Dale, Aug 15 2011 *)
-
PARI
a(n)=2048*n^2+128*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
From Harvey P. Dale, Aug 15 2011: (Start)
G.f.: x*(-x^2-1918*x-2177)/(x-1)^3.
a(1)=2177, a(2)=8449, a(3)=18817, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End)
Comments