cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157476 a(n) = 2048n^2 + 128n + 1.

Original entry on oeis.org

2177, 8449, 18817, 33281, 51841, 74497, 101249, 132097, 167041, 206081, 249217, 296449, 347777, 403201, 462721, 526337, 594049, 665857, 741761, 821761, 905857, 994049, 1086337, 1182721, 1283201, 1387777, 1496449, 1609217, 1726081, 1847041
Offset: 1

Views

Author

Vincenzo Librandi, Mar 01 2009

Keywords

Comments

The identity (2048*n^2+128*n+1)^2-(16*n^2+n)*(512*n+16)^2=1 can be written as a(n)^2-A157474(n)*A157475(n)^2=1. [rewritten by Bruno Berselli, Aug 22 2011]
This is the case s=4 of the identity (8*n^2*s^4+8*n*s^2+1)^2 - (n^2*s^2+n)*(8*n*s^3+4*s)^2 = 1. - Bruno Berselli, Jan 25 2012

Crossrefs

Programs

  • Mathematica
    Table[2048n^2+128n+1,{n,30}] (* or *) LinearRecurrence[{3,-3,1},{2177,8449,18817},30] (* Harvey P. Dale, Aug 15 2011 *)
  • PARI
    a(n)=2048*n^2+128*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

From Harvey P. Dale, Aug 15 2011: (Start)
G.f.: x*(-x^2-1918*x-2177)/(x-1)^3.
a(1)=2177, a(2)=8449, a(3)=18817, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). (End)