cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157531 Triangle T(n, k) = binomial(2*n, n) + binomial(n, k)^2, read by rows.

Original entry on oeis.org

2, 3, 3, 7, 10, 7, 21, 29, 29, 21, 71, 86, 106, 86, 71, 253, 277, 352, 352, 277, 253, 925, 960, 1149, 1324, 1149, 960, 925, 3433, 3481, 3873, 4657, 4657, 3873, 3481, 3433, 12871, 12934, 13654, 16006, 17770, 16006, 13654, 12934, 12871, 48621, 48701, 49916, 55676, 64496, 64496, 55676, 49916, 48701, 48621
Offset: 0

Views

Author

Roger L. Bagula, Mar 02 2009

Keywords

Examples

			Triangle begins as:
      2;
      3,     3;
      7,    10,     7;
     21,    29,    29,    21;
     71,    86,   106,    86,    71;
    253,   277,   352,   352,   277,   253;
    925,   960,  1149,  1324,  1149,   960,   925;
   3433,  3481,  3873,  4657,  4657,  3873,  3481,  3433;
  12871, 12934, 13654, 16006, 17770, 16006, 13654, 12934, 12871;
  48621, 48701, 49916, 55676, 64496, 64496, 55676, 49916, 48701, 48621;
		

Crossrefs

Programs

  • Magma
    [Binomial(2*n, n) + Binomial(n, k)^2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 09 2021
    
  • Maple
    A157531 := proc(n,k)
        binomial(2*n,n)+binomial(n,k)^2 ;
    end proc:
    seq(seq(A157531(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jan 12 2023
  • Mathematica
    T[n_, k_]:= T[n,k]= Sum[Binomial[n, j]^2, {j,0,k}] + Sum[Binomial[n, j]^2, {j, 0, n-k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    flatten([[binomial(2*n, n) + binomial(n, k)^2 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 09 2021

Formula

T(n, k) = Sum_{j=0..k} binomial(n,j)*binomial(n,n-j) + Sum_{j=0..n-k} binomial(n,j)*binomial(n,n-j).
From G. C. Greubel, Dec 09 2021: (Start)
Sum_{k=0..n} T(n, k) = (n+2)*binomial(2*n, n).
T(n, k) = T(n, n-k).
T(n, 0) = 1 + binomial(2*n, n) = A323230(n+1).
T(2*n, n) = 2*A036910(n). (End)

Extensions

Edited by G. C. Greubel, Dec 09 2021