A157531 Triangle T(n, k) = binomial(2*n, n) + binomial(n, k)^2, read by rows.
2, 3, 3, 7, 10, 7, 21, 29, 29, 21, 71, 86, 106, 86, 71, 253, 277, 352, 352, 277, 253, 925, 960, 1149, 1324, 1149, 960, 925, 3433, 3481, 3873, 4657, 4657, 3873, 3481, 3433, 12871, 12934, 13654, 16006, 17770, 16006, 13654, 12934, 12871, 48621, 48701, 49916, 55676, 64496, 64496, 55676, 49916, 48701, 48621
Offset: 0
Examples
Triangle begins as: 2; 3, 3; 7, 10, 7; 21, 29, 29, 21; 71, 86, 106, 86, 71; 253, 277, 352, 352, 277, 253; 925, 960, 1149, 1324, 1149, 960, 925; 3433, 3481, 3873, 4657, 4657, 3873, 3481, 3433; 12871, 12934, 13654, 16006, 17770, 16006, 13654, 12934, 12871; 48621, 48701, 49916, 55676, 64496, 64496, 55676, 49916, 48701, 48621;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[Binomial(2*n, n) + Binomial(n, k)^2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 09 2021
-
Maple
A157531 := proc(n,k) binomial(2*n,n)+binomial(n,k)^2 ; end proc: seq(seq(A157531(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jan 12 2023
-
Mathematica
T[n_, k_]:= T[n,k]= Sum[Binomial[n, j]^2, {j,0,k}] + Sum[Binomial[n, j]^2, {j, 0, n-k}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
Sage
flatten([[binomial(2*n, n) + binomial(n, k)^2 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 09 2021
Formula
T(n, k) = Sum_{j=0..k} binomial(n,j)*binomial(n,n-j) + Sum_{j=0..n-k} binomial(n,j)*binomial(n,n-j).
From G. C. Greubel, Dec 09 2021: (Start)
Sum_{k=0..n} T(n, k) = (n+2)*binomial(2*n, n).
T(n, k) = T(n, n-k).
T(n, 0) = 1 + binomial(2*n, n) = A323230(n+1).
T(2*n, n) = 2*A036910(n). (End)
Extensions
Edited by G. C. Greubel, Dec 09 2021