A157720 Least number of edge lattice points from which every point of a square n x n lattice is visible.
1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5
Offset: 1
Examples
a(3) = 2 because all 9 points are visible from (1,1) or (1,2). a(5) = 3 because all 25 points are visible from (1,1), (1,2), or (1,4). a(11)= 4 because all 121 points are visible from (1,1), (1,2), (2,1), or (1,4). a(27)= 5 because all 729 points are visible from (1,1), (1,2), (2,1), (1,3), or (1,4).
Programs
-
Mathematica
Join[{1}, Table[hidden=Table[{},{n^2}]; edgePts={}; Do[pt1=(c-1)*n+d; If[c==1||c==n||d==1||d==n, AppendTo[edgePts,pt1]; lst={}; Do[pt2=(a-1)*n+b; If[GCD[c-a,d-b]>1, AppendTo[lst,pt2]], {a,n}, {b,n}]; hidden[[pt1]]=lst], {c,n}, {d,n}]; edgePts=Sort[edgePts]; done=False; k=0; done=False; k=0; While[ !done, k++; len=Binomial[4n-4,k]; i=0; While[i
Extensions
More terms from Lars Blomberg, Nov 06 2014
Comments