cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A137720 Expansion of sqrt(1-4*x)/(1-3*x).

Original entry on oeis.org

1, 1, 1, -1, -13, -67, -285, -1119, -4215, -15505, -56239, -202309, -724499, -2589521, -9254363, -33111969, -118725597, -426892131, -1539965973, -5575175319, -20260052337, -73908397851, -270657727593, -994938310059
Offset: 0

Views

Author

Paul Barry, Feb 08 2008

Keywords

Comments

Hankel transform is A120617. In general, sqrt(1-4*x)/(1-k*x) has Hankel transform with g.f. of (1-2*x)/(1+2*(k+2)*x+4*x^2).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[1-4*x]/(1-3*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 31 2014 *)
    FullSimplify[Table[I*3^(-1/2+n) + 2^(1+2*n)*Gamma[1/2+n] * Hypergeometric2F1Regularized[1, 1/2+n, 2+n, 4/3]/(3*Sqrt[Pi]), {n, 0, 20}]] (* Vaclav Kotesovec, Jul 31 2014 *)
  • PARI
    x='x+O('x^50); Vec(sqrt(1-4*x)/(1-3*x)) \\ G. C. Greubel, Mar 21 2017

Formula

a(n) = Sum_{k=0..n} 3^k*C(2*n-2*k,n-k)/(1-(2*n-2*k)).
D-finite with recurrence: n*a(n) + (6-7*n)*a(n-1) + 6*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 16 2011
a(n) ~ -2^(2*n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 31 2014
a(n) = (-1)^n * A157674(2*n+1). - Vaclav Kotesovec, Jul 31 2014

A156909 G.f.: A(x) = 1 + x*exp( Sum_{k>=1} [A(-(-1)^k*x) - 1]^k/k ).

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 18, 70, 135, 566, 1134, 4972, 10206, 46098, 96228, 443946, 938223, 4397730, 9382230, 44523232, 95698746, 458639492, 991787004, 4791683932, 10413763542, 50652087010, 110546105292, 540758574440, 1184422556700
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 18*x^6 + 70*x^7 + ...
...
A(x) = 1 + x*exp( [A(x)-1] + [A(-x)-1]^2/2 + [A(x)-1]^3/3 + [A(-x)-1]^4/4 + ...).
		

Crossrefs

Cf. A157674. - Paul D. Hanna, Mar 05 2009

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1,n,A=1+x*exp(-sum(k=1,n,(subst(A,x,(-1)^k*x+x*O(x^n))-1)^k/k))); polcoeff(A,n)}
    
  • PARI
    {a(n)=local(B=(7-sqrt(1-12*x^2+x^2*O(x^n)))/6);polcoeff(B+sqrt(B^2-B),n)} \\ Paul D. Hanna, Mar 05 2009

Formula

From Paul D. Hanna, Mar 05 2009: (Start)
G.f.: A(x) = B(x) + sqrt(12*B(x) - 12 - 3*x^2)/3
where B(x) = (7-sqrt(1-12*x^2))/6 = A(x)*A(-x) = (A(x)+A(-x))/2 = 1 + x^2/(4-3*B(x)).
Lim_{n->infinity} a(2n)/a(2n-1) = 12^(1/3); lim_{n->infinity} a(2n+1)/a(2n) = 12^(2/3). (End)
D-finite with recurrence: 288*(n-6)*(n-5)*(n-4)*(n-3)*a(n-5) + 24*(n-4)*(n-3)*(52*n^2-378*n+761)*a(n-3) + 2*(n-1)*(181*n^3-271*n^2-950*n+1752)*a(n-1) - (n-1)*(n+1)*(87*n^2+38*n+48)*a(n+1) + 4*(n+1)*(n+2)*(n+3)*(n-1)*a(n+3) = 0. - Georg Fischer, Jul 15 2025

A229116 G.f.: A(x) = exp( Sum_{n>=1} A((-1)^n*x)^n * x^n/n ).

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 2, 9, 8, 38, 28, 154, 126, 676, 602, 3129, 2816, 14718, 13384, 70334, 65204, 342108, 321788, 1686698, 1602214, 8402492, 8051652, 42239764, 40797750, 214045640, 208136494, 1092138905, 1068176200, 5606018286, 5511336912, 28929594902, 28571895096, 150000016044
Offset: 0

Views

Author

Paul D. Hanna, Sep 14 2013

Keywords

Comments

Compare to a g.f. involving the Catalan function C(x) = 1 + x*C(x)^2 (A000108):
C(x) = exp( Sum_{n>=1} C(x)^n * x^n/n ).

Examples

			G.f.: A(x) = 1 + x + x^3 + 2*x^5 + 2*x^6 + 9*x^7 + 8*x^8 + 38*x^9 +...
where
log(A(x)) = A(-x)*x + A(x)^2*x^2/2 + A(-x)^3*x^3/3 + A(x)^4*x^4/4 + A(-x)^5*x^5/5 + A(x)^6*x^6/6 + A(-x)^7*x^7/7 +...
Also,
A(x)*(1 + x*A(x)) = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 18*x^7 + 30*x^8 + 76*x^9 + 124*x^10 + 308*x^11 + 514*x^12 +...
where 1/(A(x)*(1 + x*A(x))) = A(-x)*(1 - x*A(-x)).
		

Crossrefs

Cf. A157674.

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(k=1, n, subst(A, x, (-1)^k*x+x*O(x^n))^k*x^k/k))); polcoeff(A, n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=sqrt( (1 + x*subst(A,x,-x))/((1 - x*subst(A,x,-x))*(1 - x^2*A^2)) +x*O(x^n))); polcoeff(A, n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1 - x^2*A(-x)^2)/(1 - x^2*A(x)^2) ) / (1 - x*A(-x)).
(2) A(x) = 1/( (1 + x*A(x)) * A(-x) * (1 - x*A(-x)) ).
(3) 1 + x*A(x) = 2 / (1 + A(-x)^2*(1 - x^2*A(-x)^2)).
(4) A(x) = 1/(2*A(-x)*(1 - x*A(-x))) + A(-x)*(1 + x*A(-x))/2.
a(n) ~ c * d^n/(sqrt(Pi)*n^(3/2)), where d = sqrt((37 + (182701 - 19488*sqrt(87))^(1/3) + (182701 + 19488*sqrt(87))^(1/3))/21) = 2.37234975879070748... is the root of the equation -256 + 32*d^2 - 37*d^4 + 7*d^6 = 0. If n is even then c = sqrt((522 - 19*174^(2/3)/(92133 - 9877*sqrt(87))^(1/3) - (174*(92133 - 9877*sqrt(87)))^(1/3))/1479) = 0.3620905463490063953... is the root of the equation 182*c^2 - 522*c^4 + 493*c^6 = 16. If n is odd then c = sqrt(((58*(29 - 3*sqrt(87)))^(1/3) + (58*(29 + 3*sqrt(87)))^(1/3))/29) = 0.8049267655440167596... is the root of the equation 29*c^6 - 6*c^2 = 4. - Vaclav Kotesovec, Sep 15 2013

A277604 Array of coefficients T(k,n) of the formal power series A(k,x) read by upwards antidiagonals, where A(k,x) = sqrt(1 + 2*x*A(k,x) + (4*k+1)*x^2*(A(k,x))^2), k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 1, 7, 9, 13, 1, 1, 1, 9, 13, 37, 25, 1, 1, 1, 11, 17, 73, 81, 61, 1, 1, 1, 13, 21, 121, 169, 301, 125, 1, 1, 1, 15, 25, 181, 289, 841, 729, 295, 1, 1, 1, 17, 29, 253, 441, 1801, 2197, 2549, 625, 1, 1, 1, 19, 33, 337, 625, 3301, 4913, 10123, 6561, 1447, 1
Offset: 0

Views

Author

Werner Schulte, Oct 29 2016

Keywords

Comments

For k = 0 see A000012, for k = 1 see A098615, and for k = 2 see A200376.
It will be interesting using the formulae for k < 0 (attention: signed terms!). Especially for k = -1 see A157674.
If G is the g.f. of central binomial coefficients (see A000984) and B(k,x) = G(k*x^2), then B(k,x) = A(k,x)/(1+x*A(k,x)) and A(k,x) = B(k,x) / (1-x*B(k,x)) for k >= 0. - Werner Schulte, Aug 07 2017

Examples

			The terms define the array T(k,n) for k >= 0 and n >= 0, i.e.,
k\n  0  1   2   3    4     5      6      7       8        9  . . .
0:   1  1   1   1    1     1      1      1       1        1  . . .
1:   1  1   3   5   13    25     61    125     295      625  . . .
2:   1  1   5   9   37    81    301    729    2549     6561  . . .
3:   1  1   7  13   73   169    841   2197   10123    28561  . . .
4:   1  1   9  17  121   289   1801   4913   28057    83521  . . .
5:   1  1  11  21  181   441   3301   9261   63071   194481  . . .
6:   1  1  13  25  253   625   5461  15625  123565   390625  . . .
7:   1  1  15  29  337   841   8401  24389  219619   707281  . . .
8:   1  1  17  33  433  1089  12241  35937  362993  1185921  . . .
9:   1  1  19  37  541  1369  17101  50653  567127  1874161  . . .
etc.
		

Crossrefs

Formula

A(k,x) = (x + sqrt(1 - 4*k*x^2))/(1 - (4*k+1)*x^2) for k >= 0.
T(k,0) = 1 and T(k,2*n+2) = (4*k+1)^(n+1)-2*(Sum_{i=0..n} A000108(i)*k^(i+1)* (4*k+1)^(n-i)), and T(k,2*n+1) = (4*k+1)^n for k >= 0 and n >= 0.
A(k,x) = 1/(1 - x - 2*k*x^2*C(k*x^2)), k >= 0, where C is the g.f. of A000108.
Conjecture: If B(k,n) satisfy B(k,0) = B(k,1) = 1 and B(k,n+2) = B(k,n+1) + k*B(k,n) for k >= 0 and n >= 0 (generalized Fibonacci numbers, see A015441) and G(k,x) = Sum_{n>=0} A000108(n)*B(k,n)*x^n for k >= 0, then you will have (1): A(k,x*G(k,x)) = G(k,x) and (2): G(k,x/A(k,x)) = A(k,x) for k >= 0. Especially for k = 1 see A098615 and for k = 2 see A200376.
Conjecture: T(k,2*n) = Sum_{i=0..n} A046521(n,i)*k^(n-i) for k, n >= 0. - Werner Schulte, Aug 02 2017
Recurrence: T(k,2*n+2) = (4*k+1)*T(k,2*n)-2*k^(n+1)*A000108(n) with initial value T(k,0) = 1 for k >= 0 and n >= 0. - Werner Schulte, Aug 09 2017
T(k,n) = Sum_{i=0..n} A111959(n,i)*k^((n-i)/2) for k >= 0 and n >= 0. - Werner Schulte, Aug 09 2017
Showing 1-4 of 4 results.