A157681 Fibonacci sequence beginning 29, 31.
29, 31, 60, 91, 151, 242, 393, 635, 1028, 1663, 2691, 4354, 7045, 11399, 18444, 29843, 48287, 78130, 126417, 204547, 330964, 535511, 866475, 1401986, 2268461, 3670447, 5938908, 9609355, 15548263, 25157618, 40705881, 65863499, 106569380
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Programs
-
GAP
List([1..40], n -> 27*Fibonacci(n)+2*Fibonacci(n+1)); # G. C. Greubel, Nov 17 2018
-
Magma
[27*Fibonacci(n) + 2*Fibonacci(n+1): n in [1..40]]; // G. C. Greubel, Nov 17 2018
-
Mathematica
LinearRecurrence[{1,1},{29,31},40] (* Harvey P. Dale, Dec 05 2014 *) Table[27*Fibonacci[n] +2*Fibonacci[n+1], {n, 1, 40}] (* G. C. Greubel, Nov 17 2018 *)
-
PARI
vector(40, n, 27*fibonacci(n) + 2*fibonacci(n+1)) \\ G. C. Greubel, Nov 17 2018
-
Sage
[27*fibonacci(n)+2*fibonacci(n+1) for n in (1..10)] # G. C. Greubel, Nov 17 2018
Formula
a(n) = a(n-1) + a(n-2), a(0)=29, a(1)=31.
From G. C. Greubel, Nov 17 2018: (Start)
a(n) = 27*Fibonacci(n) + 2*Fibonacci(n+1).
G.f.: x*(29+2*x)/(1-x-x^2). (End)