cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A190994 a(n) = a(n-1) + a(n-2), for n>=2, with a(0)=27, a(1)=2.

Original entry on oeis.org

27, 2, 29, 31, 60, 91, 151, 242, 393, 635, 1028, 1663, 2691, 4354, 7045, 11399, 18444, 29843, 48287, 78130, 126417, 204547, 330964, 535511, 866475, 1401986, 2268461, 3670447, 5938908, 9609355, 15548263, 25157618, 40705881, 65863499
Offset: 0

Views

Author

Keywords

Comments

Fibonacci sequence beginning 27, 2.

Crossrefs

Programs

  • Magma
    [n eq 1 select 27 else n eq 2 select 2 else Self(n-1)+Self(n-2): n in [1..40]]; // Klaus Brockhaus, Jun 20 2011
    
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ 27/2*((1/2+1/2*r)^n+(1/2-1/2*r)^n)+23/10*r*((1/2-1/2*r)^n-(1/2+1/2*r)^n): n in [0..39] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jun 20 2011
    
  • Maple
    a:= n-> (<<0|1>, <1|1>>^n. <<27, 2>>)[1,1]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 18 2018
  • Mathematica
    LinearRecurrence[{1, 1}, {27, 2}, 100]
    CoefficientList[Series[(25x-27)/(x^2+x-1),{x,0,100}],x] (* Harvey P. Dale, Jun 19 2011 *)
  • Maxima
    makelist(coeff(taylor((25*x-27)/(x^2+x-1), x, 0, n), x, n), n, 0, 33);  /* Bruno Berselli, Jun 20 2011 */
    
  • PARI
    a(n)=27*fibonacci(n-1)+2*fibonacci(n) \\ Charles R Greathouse IV, Jun 20 2011
    
  • SageMath
    [2*fibonacci(n+1) + 25*fibonacci(n-1) for n in range(101)] # G. C. Greubel, Oct 26 2022

Formula

G.f.: (27-25*x)/(1-x-x^2). - Harvey P. Dale, Jun 19 2011
a(n) = (27/2)*( ((1+sqrt(5))/2)^n + ((1-sqrt(5))/2)^n ) + (23/10)*sqrt(5)*( ((1-sqrt(5))/2)^n - ((1+sqrt(5))/2)^n ). - Antonio Alberto Olivares, Jun 19 2011, corrected by Klaus Brockhaus, Jun 20 2011
a(n) = 2*Fibonacci(n) + 27*Fibonacci(n-1). - Charles R Greathouse IV, Jun 20 2011
a(n) = 2*LucasL(n) + 25*Fibonacci(n-1). - G. C. Greubel, Oct 26 2022
Showing 1-1 of 1 results.