A157757 a(n) = 2809*n^2 - 4618*n + 1898.
89, 3898, 13325, 28370, 49033, 75314, 107213, 144730, 187865, 236618, 290989, 350978, 416585, 487810, 564653, 647114, 735193, 828890, 928205, 1033138, 1143689, 1259858, 1381645, 1509050, 1642073, 1780714, 1924973, 2074850
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[89, 3898, 13325]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
Mathematica
LinearRecurrence[{3,-3,1},{89,3898,13325},40] Table[2809n^2-4618n+1898,{n,40}] (* Harvey P. Dale, Aug 02 2024 *)
-
PARI
a(n) = 2809*n^2 - 4618*n + 1898;
Formula
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-89-3631*x-1898*x^2)/(x-1)^3.
a(n) = (28*n - 23)^2 + (45*n - 37)^2. - Klaus Purath, Mar 31 2025
53^2*a(n) - 1 = (2809*n-2309)^2. - Klaus Purath, Mar 31 2025
Comments