A157764 Primes p such that p^16 + 2^16 is also prime.
89, 107, 127, 139, 173, 179, 229, 233, 349, 421, 461, 521, 557, 571, 727, 863, 991, 1019, 1051, 1069, 1433, 1459, 1627, 1747, 1831, 1877, 2081, 2083, 2591, 2837, 3229, 3319, 3361, 3541, 3677, 3697, 3761, 3877, 4201, 4229, 4259, 4271, 4349, 4451, 4561, 4591, 5011, 5119, 5147, 5171, 5531
Offset: 1
Keywords
Examples
For n=89: 89^16 + 2^16 = 15496731425178936435099327796097 is prime and 89 is prime too. For n=3: 3 is (first odd) prime but 3^16 + 2^16 = 43112257 = 3041*14177 (not prime). For n=85: 85^16 + 2^16 = 7425108623606394726715087956161 is prime too, but 85 is not.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..2915
Crossrefs
Cf. A062324.
Programs
-
GAP
Filtered(Filtered([1..10^3],IsPrime),p->IsPrime(p) and IsPrime(p^16+2^16)); # Muniru A Asiru, Feb 04 2018
-
Maple
select(p->isprime(p) and isprime(p^16+2^16), [$1..10^4]); # Muniru A Asiru, Feb 04 2018
-
Mathematica
Select[Prime[Range[800]],PrimeQ[#^16+65536]&] (* Harvey P. Dale, Sep 07 2019 *)
-
PARI
isA157764(n) = isprime(n) && isprime(n^16+65536) \\ Michael B. Porter, Dec 17 2009
Extensions
More terms from Muniru A Asiru, Feb 05 2018
Comments