cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A375215 Primes of the form p^16 + 2^16, where p is prime (see also A157764).

Original entry on oeis.org

15496731425178936435099327796097, 295216374856540727739668685343937, 4579937329576774398276408998557697, 19419444565344683427626434801775297, 643780251284828743866259724717471297, 1110832290554380967776058484990830657, 57196271293373441589892672200988689857, 75456166331666628614079195878996262017
Offset: 1

Views

Author

Mykhailo Papenko, Oct 17 2024

Keywords

Comments

It is conjectured that solutions for p1^n + p2^n = p3 (where p1, p2, and p3 are all primes and n is a natural number) exist only when n is itself a power of two (when n is a number in A000079); and would have infinitely many solutions.
But it's known that either p1 or p2 must be a 2.

Examples

			a(1) = 89^16 + 2^16 = 15496731425178936435099327796097, which is prime.
a(2) = 107^16 + 2^16 = 295216374856540727739668685343937, which is prime.
a(3) = 127^16 + 2^16 = 4579937329576774398276408998557697, which is prime.
a(4) = 139^16 + 2^16 = 19419444565344683427626434801775297, which is prime.
a(5) = 173^16 + 2^16 = 643780251284828743866259724717471297, which is prime.
a(6) = 179^16 + 2^16 = 1110832290554380967776058484990830657, which is prime.
a(7) = 229^16 + 2^16 = 57196271293373441589892672200988689857, which is prime.
a(8) = 233^16 + 2^16 = 75456166331666628614079195878996262017, which is prime.
a(9) = 349^16 + 2^16 = 48440300802975619860301347588732379759937, which is prime.
a(10) = 421^16 + 2^16 = 973898133213875918230007677219773667320257, which is prime.
		

Crossrefs

The corresponding primes p are in A157764.

Programs

  • Java
    /* see link for code with instructions */
  • Mathematica
    Select[Table[Prime[p]^16+2^16,{p,60}],PrimeQ] (* James C. McMahon, Nov 18 2024 *)

Formula

a(n) = A157764(n)^16 + 2^16.

A158361 Primes p with property that Q = p^4 + 2^4 is prime.

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 37, 41, 59, 61, 71, 79, 97, 131, 139, 179, 223, 227, 229, 241, 283, 313, 317, 359, 367, 379, 383, 389, 439, 449, 461, 487, 503, 521, 569, 593, 617, 619, 631, 661, 683, 709, 733, 811, 821, 853, 911, 977, 1049, 1061, 1063, 1069, 1091, 1093, 1117
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 17 2009

Keywords

Comments

Q is always congruent to 1 (mod 4).
Q is divisible by 17 if p is congruent to 1, 4, 13, or 16 (mod 17).
It is conjectured that sequence a(n) is infinite.
Q is in A094479. - Zak Seidov, Jul 08 2020

Examples

			3 is in the sequence since for p=3: p^4+2^4 = 3^4+16 = 97 is prime.
29 is not in the sequence since 29^4+2^4 = 707297 = 73 x 9689 is not prime.
		

References

  • Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications 2005
  • Richard Guy, "Unsolved Problems in Number Theory"

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime(p^4+16)]; // Vincenzo Librandi, Jun 18 2014
  • Mathematica
    Select[Range[10^3], PrimeQ[#] && PrimeQ[#^4 + 16] &] (* Vincenzo Librandi, Jun 18 2014 *)
    Select[Prime[Range[200]],PrimeQ[#^4+16]&] (* Harvey P. Dale, Jun 23 2014 *)
  • PARI
    isA158361(n) = isprime(n) && isprime(n^4+16)
    

Extensions

Corrected and edited by Michael B. Porter, Dec 17 2009

A132260 Array T(k,n) = n-th prime p such that 2^2^k + p^2^k is prime, k>2, read by antidiagonals.

Original entry on oeis.org

13, 89, 137, 29, 107, 223, 37, 59, 127, 331, 113, 53, 101, 139, 389, 113, 223, 181, 103, 173, 491, 13, 1223, 5279, 491, 109, 179, 563, 1151, 181, 1277, 7517, 547, 181, 229, 647, 43, 2153, 761, 1993, 8039, 619, 199, 233, 701, 53, 271, 3559, 4133, 2399, 9833, 661, 379, 349, 773
Offset: 3

Views

Author

Jonathan Vos Post, Aug 15 2007

Keywords

Comments

These were computed by Ignacio Larrosa CaƱestro, who cautions that some are only probable primes. The k=3 row is A157950. The main diagonal is A132261.

Examples

			The array begins:
   n  |   1    2    3    4    5    6     7     8     9    10
  ----+--------------------------------------------------------
  k=3 |  13  137  223  331  389  491   563   647   701   773
  k=4 |  89  107  127  139  173  179   229   233   349   421
  k=5 |  29   59  101  103  109  181   199   379   769   881
  k=6 |  37   53  181  491  547  619   661   677   911   941
  k=7 | 113  223 5279 7517 8039 9833 12197 13757 21467 23447
  k=8 | 113 1223 1277 1993 2399 9349  9739 10211 10973 11059
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Feb 01 2022

A157950 Primes p such that p^8 + 2^8 is prime.

Original entry on oeis.org

13, 137, 223, 331, 389, 491, 563, 647, 701, 773, 797, 1063, 1181, 1531, 1579, 1811, 2027, 2087, 2269, 2333, 2393, 2617, 2687, 2699, 2857, 3313, 3467, 3623, 3637, 3691, 3739, 3761, 3863, 3877, 4133, 4201, 4283, 4297, 4877, 5023, 5839, 5897, 6043, 6053
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 10 2009

Keywords

Comments

17 divides p^8 + 2^8 if k is odd and p = 17k +- 6, 17k +- 10, 17k +- 12, 17k +- 14, so only 8 integers p in each interval of length 34 need to be tested for the primality of p and of p^8 + 2^8: those of the forms p = 17k +- 2 (which yield terms 223, 389, 491, 563, 797, 1579, 3313, 3623, 3691, ...), p = 17k +- 4 (which yield terms 13, 701, 2027, 2087, 2333, 2393, 2699, ...), p = 17k +-8 (which yield terms 331, 773, 1063, 1181, 1811, 2269, ...), and p = 17k +-16 (which yield terms 137, 647, 1531, 2617, 2687, 2857, 3467, 3637, ...).
It is conjectured that this sequence is infinite.

Examples

			n=11: 11^8 + 2^8 = 214359137 = 17 * 241 * 52321, not prime, so 11 is not a term;
n=13: 13^8 + 2^8 = 815730977 is prime, so 13 is a term.
		

References

  • Leonard E. Dickson, History of the Theory of Numbers.
  • Richard Guy, Unsolved Problems in Number Theory.

Crossrefs

Programs

  • Maple
    a := proc (n) if isprime(ithprime(n)^8+256) = true then ithprime(n) else end if end proc: seq(a(n), n = 1 .. 900); # Emeric Deutsch, Mar 14 2009

Extensions

Definition corrected by Emeric Deutsch, Mar 14 2009
Extended by Emeric Deutsch, Mar 14 2009
Edited by Jon E. Schoenfield, Jan 29 2019

A158477 Primes p with property that Q(p) = p^32+2^32 is prime.

Original entry on oeis.org

29, 59, 101, 103, 109, 181, 199, 379, 769, 881, 919, 977, 1097, 1213, 1303, 1583, 2099, 2113, 2441, 2521, 2617, 2777, 3067, 3739, 4133, 4289, 4519, 4931, 5039, 5113, 5227, 5417, 5743, 5783, 6143, 6373, 6691, 8053, 8209, 8287, 8513, 9109, 9203, 9689, 9787, 9923, 9941
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 20 2009

Keywords

Comments

1) Q=(p^16)^2+(2^16)^2 only for Q=4k+1 because of Fermat/Euler/Lagrange theorem concerning prime as sum of two squares.
2) It is conjectured that sequence a(n) is infinite.
3) Note the twin prime: a(3)=101, a(4)=103.
The next set of twins is a(101)=30557, a(102)=30559. - Robert Israel, Apr 05 2016

Examples

			p=3: 3^32+2^32=1853024483819137 = 1153 x 1607133116929 no prime;
also for following primes p=5, 7, 11, 13, 17, 19, 23: Q(p) no prime;
p=29: 29^32+2^32=62623297589448778360828428329074752313100292737 is prime => a(1)=29.
		

References

  • Richard E. Crandall, Carl Pomerance, Prime Numbers: A Computational Perspective, Springer 2001.
  • Leonard E. Dickson, History of the Theory of Numbers, Dover Pub. Inc., 2005.

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and isprime(t^32 + 2^32), [seq(i,i=3..10000,2)]); # Robert Israel, Apr 05 2016
  • Mathematica
    With[{c=2^32},Select[Prime[Range[1300]],PrimeQ[#^32+c]&]] (* Harvey P. Dale, May 04 2018 *)
  • PARI
    isA158477(n) = isprime(n) && isprime(n^32+4294967296) \\ Michael B. Porter, Dec 17 2009
    
  • PARI
    lista(nn) = forprime(p=3, nn, if(ispseudoprime(p^32+2^32), print1(p, ", "))); \\ Altug Alkan, Apr 05 2016

Formula

n^32+2^32 and n to be prime.

A378490 Least prime p such that p^(2^n) + 2^(2^n) is prime.

Original entry on oeis.org

3, 3, 3, 13, 89, 29, 37, 113, 113, 13, 1151, 43, 53, 5503
Offset: 0

Views

Author

Jean-Marc Rebert, Nov 28 2024

Keywords

Examples

			a(1) = 3, because 3^(2^1) + 2^(2^1) = 13 is prime and no smaller prime satisfies the condition.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=2, q=2^n); while (!ispseudoprime(p^q + 2^q), p=nextprime(p+1)); p; \\ Michel Marcus, Nov 28 2024

Formula

a(n) = A132260(n,1) for n>=3.
Showing 1-6 of 6 results.