cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A157782 Denominator of Bernoulli(n, -1/2).

Original entry on oeis.org

1, 1, 12, 4, 240, 16, 1344, 64, 3840, 256, 33792, 1024, 5591040, 4096, 49152, 16384, 16711680, 65536, 104595456, 262144, 173015040, 1048576, 289406976, 4194304, 22900899840, 16777216, 201326592, 67108864, 116769423360, 268435456
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Crossrefs

For numerators see A157781.

Programs

  • Mathematica
    Table[Denominator[BernoulliB[n, -1/2]], {n, 0, 50}] (* Vincenzo Librandi, Mar 19 2014 *)

A285866 a(n) = numerator((-2)^n*Sum_{k=0..n} binomial(n,k) * Bernoulli(k, 1/2)).

Original entry on oeis.org

1, -2, 11, -6, 127, -10, 221, -14, 367, -18, -1895, -22, 1447237, -26, -57253, -30, 118526399, -34, -5749677193, -38, 91546283957, -42, -1792042789427, -46, 1982765468376757, -50, -286994504449237, -54, 3187598676787485443, -58, -4625594554880206360895, -62
Offset: 0

Views

Author

Wolfdieter Lang, May 03 2017

Keywords

Comments

Previous name: Numerators of alternating row sums of the rational triangle B2 = A285864/A285865.
The denominators are given in A141459.

Crossrefs

Programs

  • Maple
    a := n -> numer((-2)^n*add(binomial(n,k)*bernoulli(k,1/2), k=0..n)):
    seq(a(n), n=0..31); # Peter Luschny, Jul 24 2020
  • Mathematica
    a[n_] := (-2)^n Sum[Binomial[n, k] BernoulliB[k, 1/2], {k, 0, n}] // Numerator;
    Table[a[n], {n, 0, 31}] (* Peter Luschny, Jul 24 2020 *)
  • SageMath
    # uses [gen_bernoulli_number from A157811]
    print([numerator((-1)^n*gen_bernoulli_number(n, 2)) for n in range(33)]) # Peter Luschny, Mar 26 2021

Formula

a(n) = numerator(Sum_{m=0..n} (-1)^m*A285864(n, m)/A285865(n, m)), n >= 0, where the rational triangle is B2(n, m) = binomial(m, m)*2^(n-m)*B(n-m), with the Bernoulli numbers B(k) = A027641(k)/A027642(k).

Extensions

More terms from Indranil Ghosh, May 06 2017
New name by Peter Luschny, Jul 24 2020

A335947 T(n, k) = numerator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 7, 0, -1, 0, 1, 0, 7, 0, -5, 0, 1, -31, 0, 7, 0, -5, 0, 1, 0, -31, 0, 49, 0, -7, 0, 1, 127, 0, -31, 0, 49, 0, -7, 0, 1, 0, 381, 0, -31, 0, 147, 0, -3, 0, 1, -2555, 0, 381, 0, -155, 0, 49, 0, -15, 0, 1
Offset: 0

Views

Author

Peter Luschny, Jul 01 2020

Keywords

Comments

The polynomials form an Appell sequence.
The parity of n equals the parity of b(n, x). The Bernoulli polynomials do not possess this property.

Examples

			First few polynomials are:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = -(1/12) + x^2;
b_3(x) = -(1/4)*x + x^3;
b_4(x) = (7/240) - (1/2)*x^2 + x^4;
b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
Normalized by A335949:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = (-1 + 12*x^2) / 12;
b_3(x) = (-x + 4*x^3) / 4;
b_4(x) = (7 - 120*x^2 + 240*x^4) / 240;
b_5(x) = (7*x - 40*x^3 + 48*x^5) / 48;
b_6(x) = (-31 + 588*x^2 - 1680*x^4 + 1344*x^6) / 1344;
b_7(x) = (-31*x + 196*x^3 - 336*x^5 + 192*x^7) / 192;
Triangle starts:
[0] 1;
[1] 0,   1;
[2] -1,  0,   1;
[3] 0,   -1,  0,   1;
[4] 7,   0,   -1,  0,   1;
[5] 0,   7,   0,   -5,  0,  1;
[6] -31, 0,   7,   0,   -5, 0,   1;
[7] 0,   -31, 0,   49,  0,  -7,  0,  1;
[8] 127, 0,   -31, 0,   49, 0,   -7, 0,  1;
[9] 0,   381, 0,   -31, 0,  147, 0,  -3, 0, 1;
		

Crossrefs

Cf. A335948 (denominators), A335949 (denominators of the polynomials).
Cf. A157779 (column 0), A001896 (column 0 at even indices only).

Programs

  • Maple
    b := (n,x) -> bernoulli(n, x+1/2):
    A335947row := n -> seq(numer(coeff(b(n,x), x, k)), k = 0..n):
    seq(A335947row(n), n = 0..10);

Formula

b(n, 1/2) = Bernoulli(n, 1) = A164555(n)/A027642(n).
b(n, -1) = Bernoulli(n, -1/2) = A157781(n)/A157782(n).
b(n, 0) = Bernoulli(n, 1/2) = A157779(n)/A157780(n).
b(n, x) = Bernoulli(n, x + 1/2).
Showing 1-3 of 3 results.