cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A157781 Numerator of Bernoulli(n, -1/2).

Original entry on oeis.org

1, -1, 11, -3, 127, -5, 221, -7, 367, -9, -1895, -11, 1447237, -13, -57253, -15, 118526399, -17, -5749677193, -19, 91546283957, -21, -1792042789427, -23, 1982765468376757, -25, -286994504449237, -27, 3187598676787485443, -29, -4625594554880206360895, -31
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Crossrefs

For denominators see A157782.

Programs

  • Mathematica
    Numerator[BernoulliB[Range[0,35],-(1/2)]] (* Harvey P. Dale, Aug 14 2011 *)

A285866 a(n) = numerator((-2)^n*Sum_{k=0..n} binomial(n,k) * Bernoulli(k, 1/2)).

Original entry on oeis.org

1, -2, 11, -6, 127, -10, 221, -14, 367, -18, -1895, -22, 1447237, -26, -57253, -30, 118526399, -34, -5749677193, -38, 91546283957, -42, -1792042789427, -46, 1982765468376757, -50, -286994504449237, -54, 3187598676787485443, -58, -4625594554880206360895, -62
Offset: 0

Views

Author

Wolfdieter Lang, May 03 2017

Keywords

Comments

Previous name: Numerators of alternating row sums of the rational triangle B2 = A285864/A285865.
The denominators are given in A141459.

Crossrefs

Programs

  • Maple
    a := n -> numer((-2)^n*add(binomial(n,k)*bernoulli(k,1/2), k=0..n)):
    seq(a(n), n=0..31); # Peter Luschny, Jul 24 2020
  • Mathematica
    a[n_] := (-2)^n Sum[Binomial[n, k] BernoulliB[k, 1/2], {k, 0, n}] // Numerator;
    Table[a[n], {n, 0, 31}] (* Peter Luschny, Jul 24 2020 *)
  • SageMath
    # uses [gen_bernoulli_number from A157811]
    print([numerator((-1)^n*gen_bernoulli_number(n, 2)) for n in range(33)]) # Peter Luschny, Mar 26 2021

Formula

a(n) = numerator(Sum_{m=0..n} (-1)^m*A285864(n, m)/A285865(n, m)), n >= 0, where the rational triangle is B2(n, m) = binomial(m, m)*2^(n-m)*B(n-m), with the Bernoulli numbers B(k) = A027641(k)/A027642(k).

Extensions

More terms from Indranil Ghosh, May 06 2017
New name by Peter Luschny, Jul 24 2020

A335947 T(n, k) = numerator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 7, 0, -1, 0, 1, 0, 7, 0, -5, 0, 1, -31, 0, 7, 0, -5, 0, 1, 0, -31, 0, 49, 0, -7, 0, 1, 127, 0, -31, 0, 49, 0, -7, 0, 1, 0, 381, 0, -31, 0, 147, 0, -3, 0, 1, -2555, 0, 381, 0, -155, 0, 49, 0, -15, 0, 1
Offset: 0

Views

Author

Peter Luschny, Jul 01 2020

Keywords

Comments

The polynomials form an Appell sequence.
The parity of n equals the parity of b(n, x). The Bernoulli polynomials do not possess this property.

Examples

			First few polynomials are:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = -(1/12) + x^2;
b_3(x) = -(1/4)*x + x^3;
b_4(x) = (7/240) - (1/2)*x^2 + x^4;
b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
Normalized by A335949:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = (-1 + 12*x^2) / 12;
b_3(x) = (-x + 4*x^3) / 4;
b_4(x) = (7 - 120*x^2 + 240*x^4) / 240;
b_5(x) = (7*x - 40*x^3 + 48*x^5) / 48;
b_6(x) = (-31 + 588*x^2 - 1680*x^4 + 1344*x^6) / 1344;
b_7(x) = (-31*x + 196*x^3 - 336*x^5 + 192*x^7) / 192;
Triangle starts:
[0] 1;
[1] 0,   1;
[2] -1,  0,   1;
[3] 0,   -1,  0,   1;
[4] 7,   0,   -1,  0,   1;
[5] 0,   7,   0,   -5,  0,  1;
[6] -31, 0,   7,   0,   -5, 0,   1;
[7] 0,   -31, 0,   49,  0,  -7,  0,  1;
[8] 127, 0,   -31, 0,   49, 0,   -7, 0,  1;
[9] 0,   381, 0,   -31, 0,  147, 0,  -3, 0, 1;
		

Crossrefs

Cf. A335948 (denominators), A335949 (denominators of the polynomials).
Cf. A157779 (column 0), A001896 (column 0 at even indices only).

Programs

  • Maple
    b := (n,x) -> bernoulli(n, x+1/2):
    A335947row := n -> seq(numer(coeff(b(n,x), x, k)), k = 0..n):
    seq(A335947row(n), n = 0..10);

Formula

b(n, 1/2) = Bernoulli(n, 1) = A164555(n)/A027642(n).
b(n, -1) = Bernoulli(n, -1/2) = A157781(n)/A157782(n).
b(n, 0) = Bernoulli(n, 1/2) = A157779(n)/A157780(n).
b(n, x) = Bernoulli(n, x + 1/2).
Showing 1-3 of 3 results.