A157791 Least number of lattice points on two adjacent sides from which every point of a square n X n lattice is visible.
1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1
Examples
a(11)= 4 because all 121 points are visible from (1,1), (1,2), (2,1), and (1,4). a(25)= 4 because all 625 points are visible from (1,2), (4,1), (6,1), and (23,1).
Links
- Eric Weisstein's World of Mathematics, Visible Point
Programs
-
Mathematica
Join[{1}, Table[hidden=Table[{},{n^2}]; edgePts={}; Do[pt1=(c-1)*n+d; If[c==1||d==1, AppendTo[edgePts,pt1]; lst={}; Do[pt2=(a-1)*n+b; If[GCD[c-a,d-b]>1, AppendTo[lst,pt2]], {a,n}, {b,n}]; hidden[[pt1]]=lst], {c,n}, {d,n}]; edgePts=Sort[edgePts]; done=False; k=0; done=False; k=0; While[ !done, k++; len=Binomial[2n-1,k]; i=0; While[i
Extensions
More terms from Lars Blomberg, Nov 06 2014
Comments