A157880 Expansion of 136*x^2 / (-x^3+1155*x^2-1155*x+1).
0, 136, 157080, 181270320, 209185792336, 241400223085560, 278575648254944040, 321476056685982336736, 370983090839975361649440, 428114165353274881361117160, 494043375834588373115367553336, 570125627598949629300252795432720, 657924480205812037624118610561805680
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..325
- Index entries for linear recurrences with constant coefficients, signature (1155,-1155,1).
Programs
-
Mathematica
LinearRecurrence[{1155,-1155,1},{0,136,157080},20] (* Harvey P. Dale, Dec 04 2019 *)
-
PARI
concat(0, Vec(136*x^2/(-x^3+1155*x^2-1155*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
-
PARI
a(n) = round(-((577+408*sqrt(2))^(-n)*(-1+(577+408*sqrt(2))^n)*(17+12*sqrt(2)+(-17+12*sqrt(2))*(577+408*sqrt(2))^n))/288) \\ Colin Barker, Jul 25 2016
Formula
G.f.: 136*x^2/(-x^3+1155*x^2-1155*x+1).
c(1) = 0, c(2) = 136, c(3) = 1155*c(2), c(n) = 1155 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((577+408*sqrt(2))^(-n)*(-1+(577+408*sqrt(2))^n)*(17+12*sqrt(2)+(-17+12*sqrt(2))*(577+408*sqrt(2))^n))/288. - Colin Barker, Jul 25 2016
Extensions
Edited by Alois P. Heinz, Sep 09 2011
Comments