A157014 Expansion of x*(1-x)/(1 - 22*x + x^2).
1, 21, 461, 10121, 222201, 4878301, 107100421, 2351330961, 51622180721, 1133336644901, 24881784007101, 546265911511321, 11992968269241961, 263299036011811821, 5780585823990618101, 126909589091781786401, 2786230374195208682721, 61170158643202809233461
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (22,-1).
Crossrefs
Cf. similar sequences listed in A238379.
Programs
-
GAP
a:=[1,21];; for n in [3..20] do a[n]:=22*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
-
Magma
I:=[1,21]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
-
Maple
seq( simplify(ChebyshevU(n-1,11) - ChebyshevU(n-2,11)), n=1..20); # G. C. Greubel, Jan 14 2020
-
Mathematica
CoefficientList[Series[(1-x)/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Feb 21 2014 *) a[c_, n_] := Module[{}, p := Length[ContinuedFraction[ Sqrt[ c]][[2]]]; d := Denominator[Convergents[Sqrt[c], n p]]; t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}]; Return[t]; ] (* Complement of A041049 *) a[30, 20] (* Gerry Martens, Jun 07 2015 *) Table[ChebyshevU[n-1, 11] - ChebyshevU[n-2, 11], {n,20}] (* G. C. Greubel, Jan 14 2020 *)
-
PARI
Vec((1-x)/(1-22*x+x^2)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
-
Sage
[chebyshev_U(n-1,11) - chebyshev_U(n-2,11) for n in (1..20)] # G. C. Greubel, Jan 14 2020
Formula
G.f.: x*(1-x)/(1-22*x+x^2).
a(1) = 1, a(2) = 21, a(n) = 22*a(n-1) - a(n-2) for n>2.
5*A157460(n)+1 = a(n)^2 for n>=1.
a(n) = (6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n))/(12*(11+2*sqrt(30))^n). - Gerry Martens, Jun 07 2015
a(n) = ChebyshevU(n-1, 11) - ChebyshevU(n-2, 11). - G. C. Greubel, Jan 14 2020
Extensions
Edited by Alois P. Heinz, Sep 09 2011
Comments