A157898 Triangle read by rows: inverse binomial transform of A059576.
1, 0, 1, 1, 1, 2, 0, 2, 2, 4, 1, 2, 6, 4, 8, 0, 3, 6, 16, 8, 16, 1, 3, 12, 16, 40, 16, 32, 0, 4, 12, 40, 40, 96, 32, 64, 1, 4, 20, 40, 120, 96, 224, 64, 128, 0, 5, 20, 80, 120, 336, 224, 512, 128, 256
Offset: 0
Examples
First few rows of the triangle = 1; 0, 1; 1, 1, 2; 0, 2, 2, 4; 1, 2, 6, 4, 8; 0, 3, 6, 16, 8, 16; 1, 3, 12, 16, 40, 16, 32; 0, 4, 12, 40, 40, 96, 32, 64; 1, 4, 20, 40, 120, 96, 224, 64, 128; 0, 5, 20, 80, 120, 336, 224, 512, 128, 256; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
A011782:= func< n | n eq 0 select 1 else 2^(n-1) >; function t(n, k) // t = A059576 if k eq 0 or k eq n then return A011782(n); else return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1); end if; return t; end function; A157898:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*t(j,k): j in [k..n]]) >; [A157898(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 03 2022
-
Maple
A059576 := proc (n, k) if n = 0 then return 1; end if; if k <= n and k >= 0 then add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k)) else 0 ; end if end proc: A157898 := proc(n,k) add ( A130595(n,j)*A059576(j,k),j=k..n) ; end proc: # R. J. Mathar, Feb 13 2013
-
Mathematica
t[n_, k_]:= t[n, k]= If[k==0 || k==n, 2^(n-1) +Boole[n==0]/2, 2*t[n-1, k-1] + 2*t[n-1, k] -(2 -Boole[n==2])*t[n-2, k-1]]; (* t= A059576 *) A157898[n_, k_]:= A157898[n, k]= Sum[(-1)^(n-j)*Binomial[n,j]*t[j,k], {j,k,n}]; Table[A157898[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2022 *)
-
SageMath
@CachedFunction def t(n, k): # t = A059576 if (k==0 or k==n): return bool(n==0)/2 + 2^(n-1) # A011782 else: return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1) def A157898(n,k): return sum((-1)^(n-j)*binomial(n,j)*t(j,k) for j in (k..n)) flatten([[A157898(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 03 2022
Formula
Sum_{k=0..n} T(n, k) = A097076(n+1).
From G. C. Greubel, Sep 03 2022: (Start)
T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(n,j)*A059576(j,k).
T(n, 0) = A059841(n).
T(n, 1) = A004526(n-1).
T(n, 2) = 2*A008805(n-2).
T(n, 3) = 4*A058187(n-3).
T(n, 4) = 8*A189976(n+4).
T(n, n) = A011782(n).
T(n, n-1) = A011782(n) - [n==0]. (End)
Comments