cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A157928 a(n) = 0 if n < 2, = 1 otherwise.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Jaroslav Krizek, Mar 09 2009

Keywords

Comments

A characteristic function which indicates whether n has a prime factorization n = product p_i^e_i where p_i are primes (A000040) and e_i nonnegative exponents, at least one e_i nonzero.
a(n), n>=1, is also generated by the following Dirichlet convolutions:
a(n) = A157658(n) * A000012(n),
a(n) = A008683(n) * A032741(n).
a(n) appears as a factor in the following Dirichlet convolutions:
a(n) * A000010(n) = A051953(n),
a(n) * A000027(n) = A001065(n),
a(n) * A000012(n) = A032741(n).
a(n) is also both the number of disconnected 0-regular graphs on n vertices and the number of disconnected 1-regular graphs on 2n vertices. - Jason Kimberley, Sep 27 2011
Partial sums of A185012. - Jason Kimberley, Oct 15 2011
Decimal expansion of 1/900. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

  • Mathematica
    PadRight[{0,0},120,{1}] (* Harvey P. Dale, Jun 03 2019 *)

Formula

a(n) = A057427(n-1) for n >= 2.
From Elmo R. Oliveira, Jul 20 2024: (Start)
G.f.: x^2/(1-x).
E.g.f.: exp(x) - x - 1. (End)

Extensions

Definition simplified by R. J. Mathar, May 17 2010