A157951 a(n) = 128*n + 1.
129, 257, 385, 513, 641, 769, 897, 1025, 1153, 1281, 1409, 1537, 1665, 1793, 1921, 2049, 2177, 2305, 2433, 2561, 2689, 2817, 2945, 3073, 3201, 3329, 3457, 3585, 3713, 3841, 3969, 4097, 4225, 4353, 4481, 4609, 4737, 4865, 4993, 5121, 5249, 5377, 5505, 5633, 5761
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Edward J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(8^2*t+1)).
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Cf. A017066.
Programs
-
Maple
A157951:=n->128*n + 1: seq(A157951(n), n=1..80); # Wesley Ivan Hurt, Jan 24 2017
-
Mathematica
128Range[50]+1 (* Harvey P. Dale, Mar 15 2011 *) LinearRecurrence[{2, -1}, {129, 257}, 50] (* Vincenzo Librandi, Feb 10 2012 *)
-
PARI
for(n=1, 50, print1(128*n + 1", ")); \\ Vincenzo Librandi, Feb 10 2012
Formula
From Vincenzo Librandi, Feb 10 2012: (Start)
G.f.: x*(129-x)/(1-x)^2.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: exp(x)*(128*x + 1) - 1. - Elmo R. Oliveira, Apr 04 2025
Comments