cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158231 a(n) = 256*n + 1.

Original entry on oeis.org

257, 513, 769, 1025, 1281, 1537, 1793, 2049, 2305, 2561, 2817, 3073, 3329, 3585, 3841, 4097, 4353, 4609, 4865, 5121, 5377, 5633, 5889, 6145, 6401, 6657, 6913, 7169, 7425, 7681, 7937, 8193, 8449, 8705, 8961, 9217, 9473, 9729, 9985, 10241, 10497
Offset: 1

Views

Author

Vincenzo Librandi, Mar 14 2009

Keywords

Comments

The identity (256*n + 1)^2 - (256*n^2 + 2*n)*16^2 = 1 can be written as a(n)^2 - A158230(n)*16^2 = 1.
Also the identity (512*n + 1)^2 - (256*n^2 + n)*32^2 = 1 can be written as A076338(n)^2 - (n*a(n))*32^2 = 1. - Vincenzo Librandi, Feb 23 2012

Crossrefs

Programs

  • Magma
    I:=[257, 513]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
    
  • Maple
    A158231:=n->256*n + 1; seq(A158231(n), n=1..50); # Wesley Ivan Hurt, Jan 24 2014
  • Mathematica
    256Range[50]+1 (* or *) LinearRecurrence[{2,-1},{257,513},50] (* Harvey P. Dale, Nov 21 2011 *)
  • PARI
    a(n) = 256*n + 1

Formula

a(n) = 2*a(n-1) - a(n-2); a(1)=257, a(2)=513. - Harvey P. Dale, Nov 21 2011
G.f.: x*(257-x)/(x-1)^2. - Harvey P. Dale, Nov 21 2011