A158235 Numbers n whose square can be represented as a repdigit number in some base less than n.
11, 20, 39, 40, 49, 78, 133, 247, 494, 543, 1086, 1218, 1629, 1651, 1729, 2172, 2289, 2715, 3097, 3258, 3458, 3801, 4171, 4344, 4503, 4578, 4887, 5187, 5430, 6194, 6231, 6867, 6916, 7303, 7540, 7563, 8342, 8645, 8773, 9139, 9156, 9291, 10374, 12103
Offset: 1
Examples
11^2 = 11111 in base 3. 20^2 = 1111 in base 7. 39^2 = 333 in base 22. 40^2 = 4444 in base 7. 49^2 = 777 in base 18. 78^2 = (12)(12)(12) in base 22. 1218^2 = (21)(21)(21)(21) in base 41.
Links
- Michael De Vlieger and Michel Marcus, Table of n, a(n) for n = 1..100 (first 75 terms from Michel Marcus).
- K. Inkeri, On the diophantine equation a * (x^n - 1) / (x-1) = y^m, Acta Arithmetica, XXI (1972).
- Michel Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004.
- Michael De Vlieger, Table of Values of OEIS A158235(n), A158236(n), and A158237(n) for 1 <= n <= 100.
Crossrefs
Programs
-
Mathematica
Do[sq = n^2; Do[If[Length[Union[IntegerDigits[sq, b]]] == 1, Print[{n, sq, b, IntegerDigits[sq, b]}]], {b, 2, n}], {n, 10000}]
-
PARI
isok(n) = {for (b=2, n-1, if (#Set(digits(n^2, b)) == 1, return (1));); return (0);} \\ Michel Marcus, Sep 06 2017
Extensions
Inequality edited by T. D. Noe, Mar 30 2009
Comments