A158236
The base for the numbers in A158235.
Original entry on oeis.org
3, 7, 22, 7, 18, 22, 30, 68, 68, 313, 313, 41, 313, 146, 653, 313, 499, 313, 710, 313, 653, 313, 423, 313, 292, 499, 313, 653, 313, 710, 439, 499, 653, 699, 99, 4366, 423, 653, 521, 581, 499, 710, 653, 653, 710, 4701, 653, 699, 4366, 710, 653, 4611, 787, 2272
Offset: 1
From _Michael De Vlieger_, Sep 08 2017: (Start)
Bases that appear, for numbers 2 <= m <= 101000 in A158235, i.e., for 1 <= n <= 100. f = frequency of b in a(n) for m in the range shown above:
Base b f Prime factors of b
------------------------------
3 1 3
7 2 7
18 1 2, 3, 3
22 2 2, 11
30 1 2, 3, 5
41 1 41
68 2 2, 2, 17
99 1 3, 3, 11
146 1 2, 73
239 2 239
292 1 2, 2, 73
313 10 313
423 2 3, 3, 47
439 1 439
499 4 499
521 1 521
581 1 7, 83
653 9 653
699 2 3, 233
710 6 2, 5, 71
787 1 787
1047 1 3, 349
1353 1 3, 11, 41
1425 1 3, 5, 5, 19
1660 1 2, 2, 5, 83
1714 1 2, 857
2060 1 2, 2, 5, 103
2174 1 2, 1087
2198 1 2, 7, 157
2272 5 2, 2, 2, 2, 2, 71
2819 4 2819
3019 1 3019
4366 13 2, 37, 59
4526 2 2, 31, 73
4611 6 3, 29, 53
4701 8 3, 1567
6205 1 5, 17, 73
(End)
A158237
The repdigit for the numbers in A158235.
Original entry on oeis.org
1, 1, 3, 4, 7, 12, 19, 13, 52, 3, 12, 21, 27, 127, 7, 48, 21, 75, 19, 108, 28, 147, 97, 192, 237, 84, 243, 63, 300, 76, 201, 189, 112, 109, 58, 3, 388, 175, 283, 247, 336, 171, 252, 343, 304, 7, 448, 436, 12, 475, 567, 13, 453, 57, 684
Offset: 1
Original entry on oeis.org
11, 20, 39, 49, 133, 247, 543, 1218, 1651, 1729, 2289, 3097, 4171, 4503, 6231, 7303, 7540, 7563, 8773, 9139, 12439, 16627, 16761, 17157, 20280, 22021, 22393, 37051, 37209, 37387, 45201, 47257, 51961, 65379, 66211, 69601, 100191, 103861, 105339
Offset: 1
A167782
Numbers that are repdigits with length > 2 in some base.
Original entry on oeis.org
0, 7, 13, 15, 21, 26, 31, 40, 42, 43, 57, 62, 63, 73, 80, 85, 86, 91, 93, 111, 114, 121, 124, 127, 129, 133, 146, 156, 157, 170, 171, 172, 182, 183, 211, 215, 219, 222, 228, 241, 242, 255, 259, 266, 273, 285, 292, 307, 312, 314, 333, 341, 342, 343, 364, 365, 366
Offset: 1
26 is a term because 26_10 = 222_3.
Cf.
A167783 (Numbers that are repdigits with length > 2 in more than one base).
Cf.
A053696 (Numbers which are repunits in some base).
Cf.
A158235 (Numbers n whose square can be represented as a repdigit number in some base < n).
-
/* In PARI versions < 2.6, define: digits(n,b) = if(n=b^2+b+1,d=digits(n,b);if(is_repdigit(d),print(n," = ",d," base ",b));b++)) \\ Michael B. Porter
A167783
Numbers that are repdigits with length > 2 in more than one base.
Original entry on oeis.org
31, 63, 255, 273, 364, 511, 546, 728, 777, 931, 1023, 1365, 1464, 2730, 3280, 3549, 3783, 3906, 4095, 4557, 6560, 7566, 7812, 8191, 9114, 9331, 9841, 10507, 11349, 11718, 13671, 14043, 14763, 15132, 15624, 16383, 18291, 18662, 18915, 19608, 19682, 21845, 22351, 22698
Offset: 1
31 is in the list because 31 = 11111_2 = 111_5;
8191 = 1111111111111_2 = 111_90;
10507 = {19 19 19}_23 = 111_102.
Cf.
A167782 (numbers that are repdigits with length > 2 in some base).
Cf.
A053696 (numbers which are repunits in some base).
Cf.
A158235 (numbers n whose square is a repdigit in some base < n).
Cf.
A290869 (Numbers that are repdigits with length > 2 in more than two bases).
-
Select[Range[550], Function[n, 1 < Count[Range[2, n - 1], ?(And[Length@ DeleteCases[#, 0] == 1, Union[#][[2]] > 2] &@ DigitCount[n, #] &)]]] (* _Michael De Vlieger, Aug 09 2017 *)
-
isok(n)=my(nb = 0); for (b=2, n-1, d = digits(n, b); if ((#d > 2) && (#Set(d) == 1), nb++); if (nb > 1, return (1));); return (0); \\ Michel Marcus, Aug 08 2017
A307745
Perfect powers y^m with y > 1 and m > 1 which are Brazilian repdigits with three or more digits > 1 in some base.
Original entry on oeis.org
1521, 1600, 2401, 2744, 6084, 17689, 61009, 244036, 294849, 1179396, 1483524, 2653641, 2725801, 2989441, 4717584, 5239521, 7371225, 9591409, 10614564, 11957764, 14447601, 17397241, 18870336, 20277009, 20958084, 23882769, 26904969, 29484900, 38365636, 38825361
Offset: 1
3 * (22^3-1)/(22-1) = 39^2 and (333)_22 = 39^2 = 1521.
58 * (99^4-1)/(99-1) = 7540^2 and (AAAA)_99 = 7540^2 = 56851600 where A is the symbol for 58 in base 99.
-
rupQ[n_, mx_] := Block[{t, x, p}, p = x^2 + x + 1; While[(t = p /. x -> mx) <= n && Reduce[p == n && x >= mx, x, Integers] === False, p = x*p + 1]; t <= n]; repdQ[n_] := AnyTrue[ Rest@ Most@ Divisors@ n, rupQ[n/#, #+1] &]; ex = 2; up = 10^7; L = {}; While[2^ex <= up, L = Union[L, Parallelize@ Select[ Range[2, Floor[ up^(1/ex)] ]^ex, repdQ]]; ex = NextPrime@ ex]; L (* Giovanni Resta, Apr 27 2019 *)
-
isokb(n) = for(b=2, n-2, d=digits(n, b); if((#d > 2) && (vecmin(d)==vecmax(d)) && (d[1] > 1), return (1))); 0;
isok(n) = ispower(n) && isokb(n); \\ Michel Marcus, Apr 28 2019
A158912
Primitive numbers n whose square can be represented as a four "digit" repdigit number in some base < n.
Original entry on oeis.org
20, 1218, 7540, 20280, 1373090, 4903600, 23308460, 316540365, 527813814, 4091661910, 16718044954, 1034412600, 142903074740, 1827252574658, 31036383127940
Offset: 1
20^2 = 1111 in base 7
1218^2 = (21)(21)(21)(21) in base 41
7540^2 = (58)(58)(58)(58) in base 99
A326710
Squares m such that beta(m) = (tau(m) - 1)/2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
Original entry on oeis.org
1, 121, 400, 1521, 1600, 2401, 6084, 17689, 61009, 244036, 294849, 1179396, 1483524, 2653641, 2725801, 2989441, 4717584, 5239521, 7371225, 9591409, 10614564, 11957764, 14447601, 17397241, 18870336, 20277009, 20958084, 23882769, 26904969, 29484900, 38365636, 38825361, 47155689
Offset: 1
One example for each type:
1) 1 is not Brazilian, tau(1) = 1 and beta(1) = (tau(1) - 1)/2 = 0.
2) 121 = 11^2 = 11111_3, tau(121) = 3 and beta(121) = (tau(121) - 1)/2 = 1.
3) 1521 = 39^2 = 333_22 = (13,13)_116 = 99_168 = 33_506. The divisors of 1521 are {1, 3, 9, 13, 39, 117, 169, 507, 1521} so tau(1521) = 9 and beta(1521) = (tau(1521) - 1)/2 = 4.
Cf.
A326707 (tau(m)-3)/2, this sequence (tau(m)-1)/2.
-
brazQ[n_, b_] := Length@Union@IntegerDigits[n, b] == 1; beta[n_] := Sum[Boole @ brazQ[n, b], {b, 2, n - 2}]; aQ[n_] := beta[n] == (DivisorSigma[0, n] - 1)/2; Select[Range[6867]^2, aQ] (* Amiram Eldar, Sep 14 2019 *)
A341671
Solutions y of the Diophantine equation 3*(x^2+x+1) = y^2.
Original entry on oeis.org
3, 39, 543, 7563, 105339, 1467183, 20435223, 284625939, 3964327923, 55215964983, 769059181839, 10711612580763, 149193516948843, 2077997624703039, 28942773228893703, 403120827579808803, 5614748812888429539, 78203362552858204743, 1089232326927126436863, 15171049214426911911339
Offset: 1
The first few values for (x,y) are (1,3), (22,39), (313,543), (4366,7563), (60817,105339), ...
Subsequence of
A158235, for a(n)>3.
-
f[x_] := Sqrt[3*(x^2 + x + 1)]; f /@ LinearRecurrence[{15, -15, 1}, {1, 22, 313}, 20] (* Amiram Eldar, Feb 17 2021 *)
Showing 1-9 of 9 results.
Comments