cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158296 Primes p such that 12*p^2 -+ 1 are twin primes.

Original entry on oeis.org

3, 11, 13, 17, 29, 227, 283, 491, 647, 739, 953, 1151, 1471, 1511, 1879, 1889, 2129, 2251, 2297, 2593, 2633, 3347, 3539, 3559, 3643, 3877, 3919, 4231, 4327, 4547, 4673, 4801, 4999, 5051, 6451, 6653, 6737, 6779, 6983, 7741, 7937, 8179, 8219, 8231, 8389
Offset: 1

Views

Author

Keywords

Examples

			3 is in the sequence since 12*3^2 = 108 and (107, 109) are twin primes.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];a=12*p^2;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[1200]],AllTrue[12#^2+{1,-1},PrimeQ]&] (* Harvey P. Dale, Sep 15 2021 *)

A158297 Primes p such that 12*p^3+-1 are twin primes.

Original entry on oeis.org

11, 239, 449, 619, 2099, 2711, 3109, 3889, 4591, 5519, 8539, 9719, 12071, 17981, 19441, 21569, 28949, 29399, 32771, 38189, 38201, 40709, 41771, 44699, 45949, 47149, 50741, 52189, 52379, 52501, 52639, 55339, 56249, 58831, 61561, 62861
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [p:p in PrimesUpTo(63000)| IsPrime(12*p^3-1) and NextPrime(12*p^3-1) eq 12*p^3+1]; // Marius A. Burtea, Jan 23 2020
  • Mathematica
    lst={};Do[p=Prime[n];a=12*p^3;If[PrimeQ[a-1]&&PrimeQ[a+1],AppendTo[lst,p]],{n,8!}];lst
    Select[Prime[Range[7000]],AllTrue[12#^3+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 03 2019 *)
Showing 1-2 of 2 results.