cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158475 Denominator of Bernoulli(n, 1/7).

Original entry on oeis.org

1, 14, 294, 343, 72030, 16807, 705894, 823543, 172944030, 40353607, 18643366434, 1977326743, 5398102008390, 96889010407, 4069338437094, 4747561509943, 16948794590496510, 232630513987207, 185639150161791186, 11398895185373143
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Crossrefs

For numerators see A158334.

Programs

  • Mathematica
    Denominator[BernoulliB[Range[0,20],1/7]] (* Harvey P. Dale, Jan 03 2014 *)

A158801 a(n) = A145444(n) - A145501(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 6, 0, 0, 0, 14, 0, 0, 0, 6, 0, 0, 0, 24, 0, 0, 0, 6, 0, 0, 0, 20, 0, 0, 0, 12, 0, 0, 0, 24, 0, 0, 0, 6, 0, 0, 0, 42, 0, 0, 0, 6, 0, 0, 0, 24, 0, 0, 0, 18, 0, 0, 0, 26, 0, 0, 0, 6, 0, 0, 0, 48, 0, 0, 0, 6, 0, 0, 0, 42, 0, 0, 0, 18, 0, 0, 0, 24, 0, 0, 0, 6, 0, 0, 0, 60, 0, 0, 0
Offset: 1

Views

Author

Paul Curtz, Mar 27 2009

Keywords

Crossrefs

Programs

  • PARI
    up_to = 1001;
    t1=direuler(p=2, up_to, 1/(1-X)^3);
    t2=direuler(p=2, 2, 1+3*X^2+2*X^3, up_to);
    t3=dirmul(t1, t2); \\ For A145444
    u1=direuler(p=2, up_to, 1/(1-X)^3);
    u2=direuler(p=2, 2, 1+1*X^2+4*X^4, up_to);
    u3=dirmul(u1, u2); \\ For A145501
    A158801(n) = (t3[n]-u3[n]); \\ Antti Karttunen, Jul 21 2018

Extensions

Edited and extended by R. J. Mathar, Apr 08 2009
Showing 1-2 of 2 results.