A158335 A triangle of matrix polynomials: m(n)=antisymmeticmatix(n).Transpose[antisymmeticmatix(n)].
1, 0, -1, 1, -2, 1, 0, -9, 6, -1, 1, -12, 38, -12, 1, 0, -25, 100, -110, 20, -1, 1, -30, 255, -452, 255, -30, 1, 0, -49, 490, -1519, 1484, -511, 42, -1, 1, -56, 924, -3976, 6470, -3976, 924, -56, 1, 0, -81, 1512, -9324, 21816, -21942, 9240, -1548, 72, -1, 1, -90
Offset: 0
Examples
{1}, {0, -1}, {1, -2, 1}, {0, -9, 6, -1}, {1, -12, 38, -12, 1}, {0, -25, 100, -110, 20, -1}, {1, -30, 255, -452, 255, -30, 1}, {0, -49, 490, -1519, 1484, -511, 42, -1}, {1, -56, 924, -3976, 6470, -3976, 924, -56, 1}, {0, -81, 1512, -9324, 21816, -21942, 9240, -1548, 72, -1}, {1, -90, 2445, -19320, 63090, -92252, 63090, -19320, 2445, -90, 1}
Crossrefs
Programs
-
Mathematica
Clear[M, T, d, a, x, a0]; T[n_, m_, d_] := If[ m < n, (-1)^(n + m), If[m > n, -(-1)^(n + m), 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}].Transpose[Table[T[n, m, d], {n, 1, d}, {m, 1, d}]]; Table[Det[M[d]], {d, 1, 10}]; Table[M[d], {d, 1, 10}] Table[CharacteristicPolynomial[M[d], x], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[Expand[CharacteristicPolynomial[M[ n], x]], x], {n, 1, 10}]]; Flatten[a]; Join[{1}, Table[Apply[Plus, CoefficientList[Expand[ CharacteristicPolynomial[M[n], x]], x]], {n, 1, 10}]];
Formula
m(n)=antisymmeticmatix(n).Transpose[antisymmeticmatix(n)];
out_(n,m)=coefficients(characteristicpolynomial(m(n),x),x).
Comments