cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158339 Semiprimes that are the sum of four successive semiprimes.

Original entry on oeis.org

39, 94, 106, 118, 146, 158, 185, 201, 221, 254, 302, 365, 427, 473, 485, 519, 537, 589, 633, 655, 707, 723, 749, 767, 842, 851, 869, 901, 1003, 1145, 1205, 1211, 1219, 1247, 1263, 1337, 1349, 1603, 1646, 1681, 1703, 1731, 1797, 1891, 1903, 1937, 2005, 2019
Offset: 1

Views

Author

Zak Seidov, Mar 16 2009

Keywords

Examples

			a(1)=39=6+9+10+14, or A001358(15)=A001358(2)+A001358(3)+A001358(4)+A001358(5).
		

Crossrefs

Semiprimes that are the sum of k successive semiprimes: A131610 (k=3), A092192 (k=2), A001358 (k=1).

Programs

  • Mathematica
    Select[Total/@Partition[Select[Range[600],PrimeOmega[#]==2&],4,1], PrimeOmega[ #]==2&] (* Harvey P. Dale, Aug 14 2014 *)
  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=if(lim<39, return([])); my(v=List(), u=v, x=lim\4+log(lim)*4\1+9); forprime(p=2,x\2, forprime(q=2,min(x\p,p), listput(u,p*q))); u=Set(u); while(u[#u-2]+u[#u-1]+u[#u]+x+1<=lim, while(!issemi(x++),); u=concat(u,x)); for(i=1,#u-3, u[i]+=u[i+1]+u[i+2]+u[i+3]); u[#u-2]=u[#u-1]=u[#u]=1; forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), listput(v,p*q))); setintersect(Set(v), u) \\ Charles R Greathouse IV, Mar 05 2017