cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A254712 Semiprimes that are the sum of five successive semiprimes.

Original entry on oeis.org

69, 82, 166, 417, 451, 545, 614, 679, 717, 731, 763, 779, 799, 813, 851, 1047, 1057, 1077, 1101, 1119, 1138, 1262, 1293, 1346, 1371, 1603, 1639, 1651, 1678, 1739, 1761, 1817, 1897, 1959, 1983, 2049, 2078, 2177, 2263, 2446, 2498, 2533, 2661, 2705, 2734, 2746, 2762
Offset: 1

Views

Author

Zak Seidov, Feb 06 2015

Keywords

Examples

			69=A001358(24)=A001358(3)+...+A001358(7)= 9 + 10 + 14 + 15 + 21,
82=A001358(27)=A001358(4)+...+A001358(8)= 10 + 14 + 15 + 21 + 22.
		

Crossrefs

Programs

  • Mathematica
    Module[{sps=Select[Range[750],PrimeOmega[#]==2&]},Select[Total/@ Partition[ sps,5,1],PrimeOmega[ #] ==2&]] (* Harvey P. Dale, Nov 11 2021 *)

A266451 Semiprimes that are the sum of six consecutive semiprimes.

Original entry on oeis.org

58, 91, 123, 142, 161, 205, 278, 473, 566, 614, 706, 718, 802, 838, 851, 889, 1079, 1211, 1226, 1238, 1262, 1286, 1385, 1415, 1633, 1714, 1819, 1891, 1945, 2005, 2123, 2147, 2194, 2217, 2327, 2374, 2427, 2563, 2594, 2653, 2771, 2815, 2854, 2947, 2987, 3118, 3133, 3151, 3199, 3214, 3305, 3379
Offset: 1

Views

Author

Zak Seidov, Dec 29 2015

Keywords

Examples

			58 = A001358(21) = A001358(1) + ... + A001358(6) = 4+6+9+10+14+15,
91 = A001358(31) = A001358(3) + ... + A001358(8) = 9+10+14+15+21+22.
		

Crossrefs

Programs

  • Maple
    N:= 10^4: # to get all terms where the 6 consecutive semiprimes <= N
    P:= select(isprime, [2,seq(i,i=3..N/2,2)]): nP:= nops(P):
    SP:= NULL:
    for i from 1 to nP do
      for j from 1 to nP while P[i]*P[j] <= N do od:
      SP:= SP, op(map(`*`,P[i],P[1..j-1]));
    od:
    SP:= sort(convert({SP},list)): nSP:= nops(SP):
    select(numtheory:-bigomega=2, [seq(convert(SP[i..i+5],`+`),i=1..nSP-5)]): # Robert Israel, Nov 19 2017
  • Mathematica
    Select[(Total[#] & /@ Partition[Select[Range[4, 9999], 2 == PrimeOmega[#] &], 6, 1]), 2 == PrimeOmega[#] &]

A370685 Semiprimes that are also the sums of two, three and four successive semiprimes.

Original entry on oeis.org

2045, 2705, 2855, 14614, 18838, 28437, 31299, 43603, 68807, 76841, 77386, 88041, 108415, 116822, 194605, 213679, 218729, 252094, 255202, 269653, 290449, 294683, 302761, 305362, 310799, 339382, 348242, 361055, 398111, 445066, 445174, 459761, 464567, 489809, 496081, 501386, 515981, 534777, 544405
Offset: 1

Views

Author

Robert Israel, Feb 26 2024

Keywords

Examples

			a(3) = 2855 is a term because 2855 = 5 * 571 is a semiprime, A001358(423) = 1418 = 2*709 and A001358(424) = 1437 = 3 * 479 are two successive semiprimes whose sum is 2855, A001358(285) = 949 = 13 * 73, A001358(286) = 951 = 3 * 317 and A001358(287) = 955 = 5 * 191 are three successive semiprimes whose sum is 2855, and A001358(216) = 707 = 7 * 101, A001358(217) = 713 = 23 * 31, A001358(218) = 717 = 3 * 239, A001358(219) = 718 = 2 * 359 are four successive semiprimes whose sum is 2855.
		

Crossrefs

Cf. A001358, A370162. Intersection of A092192, A131610 and A158339.

Programs

  • Maple
    N:= 10^6: # for terms <= N
    P:= select(isprime, [2, seq(i, i=3..N/2, 2)]):
    nP:= nops(P):
    SP:= 0:
    for i from 1 while P[i]^2 <= N do
      m:= ListTools:-BinaryPlace(P, N/P[i]);
      SP:= SP, op(P[i]*P[i..m]);
    od:
    SP:= sort([SP]):
    SS:= ListTools:-PartialSums(SP):
    SS2:= {seq(SS[i]-SS[i-2], i=3..nops(SS))}:
    SS3:= {seq(SS[i]-SS[i-3], i=4..nops(SS))}:
    SS4:= {seq(SS[i]-SS[i-4], i=5..nops(SS))}:
    A:=SS2 intersect SS3 intersect SS4 intersect convert(SP, set):
    A:= sort(convert(A, list)):

A265438 Smallest semiprime that is the sum of n consecutive semiprimes.

Original entry on oeis.org

4, 10, 25, 39, 69, 58, 133, 122, 249, 209, 185, 219, 254, 327, 458, 377, 473, 579, 745, 589, 951, 898, 1047, 843, 917, 1382, 1157, 1243, 1247, 1678, 1514, 1895, 1703, 1707, 2138, 2147, 2599, 2157, 2509, 2515, 2519, 2642, 2771, 3566, 4126, 3317, 3599, 3891, 4198, 3755, 4369, 4223, 4227
Offset: 1

Views

Author

Zak Seidov, Dec 09 2015

Keywords

Comments

The sequence is non-monotonic. But are all the terms distinct?
A092190 is a subsequence. More precisely, a(A092189(k)) = A092190(k). - Altug Alkan, Dec 13 2015

Examples

			a(1) = 4 = A001358(1),
a(2) = 10 = A001358(3) = A092192(1) = A001358(1)+A001358(2) = 4+6,
a(3) = 25 = A001358(9) = A131610(1),
a(4) = 39 = A001358(15) = A158339(1),
a(5) = 69 = A001358(24) = A254712(1),
a(6) = 58 = A001358(21) = A266451(1).
		

Crossrefs

Showing 1-4 of 4 results.