cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158462 a(n) = 36*n^2 - 6.

Original entry on oeis.org

30, 138, 318, 570, 894, 1290, 1758, 2298, 2910, 3594, 4350, 5178, 6078, 7050, 8094, 9210, 10398, 11658, 12990, 14394, 15870, 17418, 19038, 20730, 22494, 24330, 26238, 28218, 30270, 32394, 34590, 36858, 39198, 41610, 44094, 46650, 49278, 51978, 54750, 57594, 60510
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (12*n^2 - 1)^2 - (36*n^2 - 6)*(2*n)^2 = 1 can be written as A158463(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[30, 138, 318]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 12 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {30, 138, 318}, 50] (* Vincenzo Librandi, Feb 12 2012 *)
    36Range[50]^2-6 (* Harvey P. Dale, Jul 19 2025 *)
  • PARI
    for(n=1, 40, print1(36*n^2-6", ")); \\ Vincenzo Librandi, Feb 12 2012

Formula

G.f.: 6*x*(5 + 8*x - x^2)/(1-x)^3. - Bruno Berselli, Aug 27 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 12 2012
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(6))*Pi/sqrt(6))/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(6))*Pi/sqrt(6) - 1)/12. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 6*(exp(x)*(6*x^2 + 6*x - 1) + 1).
a(n) = 6*A140811(n). (End)