A158490 a(n) = 100*n^2 - 10.
90, 390, 890, 1590, 2490, 3590, 4890, 6390, 8090, 9990, 12090, 14390, 16890, 19590, 22490, 25590, 28890, 32390, 36090, 39990, 44090, 48390, 52890, 57590, 62490, 67590, 72890, 78390, 84090, 89990, 96090, 102390, 108890, 115590, 122490, 129590, 136890, 144390, 152090
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[90, 390, 890]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
-
Mathematica
LinearRecurrence[{3,-3,1},{90,390,890},20] 100*Range[40]^2-10 (* Harvey P. Dale, Apr 03 2019 *)
-
PARI
a(n)=100*n^2-10 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 10*x*(-9-12*x+x^2)/(x-1)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(10))*Pi/sqrt(10))/20.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(10))*Pi/sqrt(10) - 1)/20. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: 10*(exp(x)*(10*x^2 + 10*x - 1) + 1).
a(n) = 10*A158447(n). (End)
Comments