cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158491 a(n) = 20*n^2 - 1.

Original entry on oeis.org

19, 79, 179, 319, 499, 719, 979, 1279, 1619, 1999, 2419, 2879, 3379, 3919, 4499, 5119, 5779, 6479, 7219, 7999, 8819, 9679, 10579, 11519, 12499, 13519, 14579, 15679, 16819, 17999, 19219, 20479, 21779, 23119, 24499, 25919, 27379, 28879, 30419, 31999, 33619, 35279
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (20*n^2 - 1)^2 - (100*n^2 - 10)*(2*n)^2 = 1 can be written as a(n)^2 - A158490(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 19, in the direction 19, 79, ... in the square spiral whose vertices are the generalized dodecagonal numbers A195162. - Omar E. Pol, Nov 05 2012

Crossrefs

Programs

  • Magma
    I:=[19, 79, 179]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{19,79,179},50]
    20*Range[40]^2-1 (* Harvey P. Dale, Aug 24 2021 *)
  • PARI
    a(n)=20*n^2-1 \\ Charles R Greathouse IV, Dec 23 2011

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(-19-22*x+x^2)/(x-1)^3.
From Amiram Eldar, Mar 06 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) - 1)/2. (End)
From Elmo R. Oliveira, Jan 25 2025: (Start)
E.g.f.: exp(x)*(20*x^2 + 20*x - 1) + 1.
a(n) = A134538(2*n). (End)

A382209 Numbers k such that 10+k and 10*k are perfect squares.

Original entry on oeis.org

90, 136890, 197402490, 284654260890, 410471246808090, 591899253243012090, 853518312705176632890, 1230772815021611461622490, 1774773545742851022483004890, 2559222222188376152809031436090, 3690396669622092669499600847844090, 5321549438372835441042271613559748890
Offset: 1

Views

Author

Emilio Martín, Mar 18 2025

Keywords

Comments

The limit of a(n+1)/a(n) is 1441.99930651839... = 721+228*sqrt(10) = (19+6*sqrt(10))^2.
If 10*A158490(n) is a perfect square, then A158490(n) is a term.

Examples

			90 is a term because 10+90=100 is a square and 10*90=900 is a square.
(3,1) is a solution to x^2 - 10*y^2 = -1, from which a(n) = 100*y^2-10 = 10*x^2 = 90.
		

Crossrefs

Subsequence of A158490.
Cf. A383734 = 2*A008843 (2+k and 2*k are squares).
Cf. 5*A075796^2 (5+k and 5*k are squares).
Cf. 5*A081071 (20+k and 20*k are squares).
Cf. A245226 (m such that k+m and k*m are squares).

Programs

  • Mathematica
    CoefficientList[Series[ 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)),{x,0,11}],x] (* or *) LinearRecurrence[{1443,-1443,1},{90,136890,197402490},12] (* James C. McMahon, May 08 2025 *)
  • Python
    from itertools import islice
    def A382209_gen(): # generator of terms
        x, y = 30, 10
        while True:
            yield x**2//10
            x, y = x*19+y*60, x*6+y*19
    A382209_list = list(islice(A382209_gen(),30)) # Chai Wah Wu, Apr 24 2025

Formula

a(n) = 10 * ((1/2) * (3+sqrt(10))^(2*n-1) + (1/2) * (3-sqrt(10))^(2*n-1))^2.
a(n) = 10 * (sinh((2n-1) * arcsinh(3)))^2.
a(n) = 10 * A173127(n)^2 = 100 * A097315(n)^2 - 10 (negative Pell's equation solutions).
a(n+2) = 1442 * a(n+1) - a(n) + 7200.
G.f.: 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)). - Stefano Spezia, Apr 24 2025
Showing 1-2 of 2 results.