cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A158490 a(n) = 100*n^2 - 10.

Original entry on oeis.org

90, 390, 890, 1590, 2490, 3590, 4890, 6390, 8090, 9990, 12090, 14390, 16890, 19590, 22490, 25590, 28890, 32390, 36090, 39990, 44090, 48390, 52890, 57590, 62490, 67590, 72890, 78390, 84090, 89990, 96090, 102390, 108890, 115590, 122490, 129590, 136890, 144390, 152090
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (20*n^2 - 1)^2 - (100*n^2 - 10)*(2*n)^2 = 1 can be written as A158491(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[90, 390, 890]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{90,390,890},20]
    100*Range[40]^2-10 (* Harvey P. Dale, Apr 03 2019 *)
  • PARI
    a(n)=100*n^2-10 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 10*x*(-9-12*x+x^2)/(x-1)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(10))*Pi/sqrt(10))/20.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(10))*Pi/sqrt(10) - 1)/20. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: 10*(exp(x)*(10*x^2 + 10*x - 1) + 1).
a(n) = 10*A158447(n). (End)

A158597 a(n) = 400*n^2 - 20.

Original entry on oeis.org

380, 1580, 3580, 6380, 9980, 14380, 19580, 25580, 32380, 39980, 48380, 57580, 67580, 78380, 89980, 102380, 115580, 129580, 144380, 159980, 176380, 193580, 211580, 230380, 249980, 270380, 291580, 313580, 336380, 359980, 384380, 409580, 435580, 462380, 489980, 518380
Offset: 1

Views

Author

Vincenzo Librandi, Mar 22 2009

Keywords

Comments

The identity (40*n^2 - 1)^2 - (400*n^2 - 20)*(2*n)^2 = 1 can be written as A158598(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[380, 1580, 3580]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {380, 1580, 3580}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
    400*Range[40]^2-20 (* Harvey P. Dale, Nov 04 2015 *)
  • PARI
    for(n=1, 40, print1(400*n^2- 20", ")); \\ Vincenzo Librandi, Feb 16 2012

Formula

G.f.: 20*x*(-19 - 22*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 14 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)))/40.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) - 1)/40. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 20*(exp(x)*(20*x^2 + 20*x - 1) + 1).
a(n) = 20*A158491(n). (End)

Extensions

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009

A158774 a(n) = 80*n^2 - 1.

Original entry on oeis.org

79, 319, 719, 1279, 1999, 2879, 3919, 5119, 6479, 7999, 9679, 11519, 13519, 15679, 17999, 20479, 23119, 25919, 28879, 31999, 35279, 38719, 42319, 46079, 49999, 54079, 58319, 62719, 67279, 71999, 76879, 81919, 87119, 92479, 97999, 103679, 109519, 115519, 121679
Offset: 1

Views

Author

Vincenzo Librandi, Mar 26 2009

Keywords

Comments

The identity (80*n^2 - 1)^2 - (1600*n^2 - 40)*(2*n)^2 = 1 can be written as a(n)^2 - A158773(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[79, 319, 719]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {79, 319, 719}, 50] (* Vincenzo Librandi, Feb 20 2012 *)
    80*Range[40]^2-1 (* Harvey P. Dale, Apr 21 2018 *)
  • PARI
    for(n=1, 40, print1(80*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 20 2012

Formula

From R. J. Mathar, Jul 26 2009: (Start)
G.f.: x*(-79 - 82*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 24 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(5)))*Pi/(4*sqrt(5)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(5)))*Pi/(4*sqrt(5)) - 1)/2. (End)
From Elmo R. Oliveira, Jan 25 2025: (Start)
E.g.f.: exp(x)*(80*x^2 + 80*x - 1) + 1.
a(n) = A158491(2*n). (End)

Extensions

Edited by R. J. Mathar, Jul 26 2009

A193448 a(n) = 4*(5*n^2 - 5*n + 1).

Original entry on oeis.org

4, 44, 124, 244, 404, 604, 844, 1124, 1444, 1804, 2204, 2644, 3124, 3644, 4204, 4804, 5444, 6124, 6844, 7604, 8404, 9244, 10124, 11044, 12004, 13004, 14044, 15124, 16244, 17404, 18604, 19844, 21124, 22444, 23804, 25204, 26644, 28124, 29644, 31204, 32804
Offset: 1

Views

Author

Giovanni Teofilatto, Jul 26 2011

Keywords

Comments

The natural numbers of the form 5*n^2-1, with n odd. See also A158491 for the cases where n is even. - Giovanni Teofilatto, Oct 10 2011

Crossrefs

Programs

Formula

a(n) = 4*A062786(n).
G.f.: -4*x*(1+8*x+x^2) / (x-1)^3. - R. J. Mathar, Aug 26 2011
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3. - Wesley Ivan Hurt, Nov 21 2015
Showing 1-4 of 4 results.